skip to main content


Title: Inoculum source dependent effects of ericoid, mycorrhizal fungi on flowering and reproductive success in highbush blueberry (Vaccinium corymbosum)
Most terrestrial angiosperms form mutualisms with both mycorrhizal fungi and animal pollinators. Yet, the effects of mycorrhizae on pollinator behavior and plant reproduction are unknown for most species, and whether the source or type of mycorrhizal fungi affects reproductive success has rarely been examined. We examined whether inoculating highbush blueberry ( Vaccinium corymbosum ; Ericaceae) with ericoid mycorrhizal fungi enhanced investment in flowering and attractiveness to pollinators, and thus reduced their levels of pollen limitation over that of non-inoculated plants. We also examined the degree to which pollen limitation was dependent on inoculation source and the surrounding pollinator community context. Three-year-old saplings of Vaccinium corymbosum ‘Bluecrop’ or highbush blueberry (Ericaceae) were inoculated with a) ericoid mycorrhizal fungi within soil of the rhizosphere of plants growing at a local blueberry farm, b) a commercially available ericoid inoculant, c) both the local soils and commercial inoculum, or d) were not inoculated and served as controls. They were grown for one year in pots in a common garden and, in the following year, were moved to six farms in central Vermont that were known from prior studies to differ in pollinator abundance and diversity. We conducted a hand pollination experiment at each farm to examine if inoculation or pollinator abundance (i.e., farm context) affected reproductive success. Plants treated with all types of inoculums were more likely to flower, and produced more inflorescence buds than non-inoculated plants in 2018. However, in 2019, plants in the combination inoculum treatment, alone, produced more inflorescence buds than those in the other treatments. Neither the source of inoculum nor hand pollination affected fruit set (the proportion of flowers setting fruit), or fruit sugar content. Hand pollination, but not inoculation, increased berry mass and the average number of seeds produced/berry. Our results add to the growing body of evidence that mycorrhizal fungi can affect reproductive traits of their hosts but that the effects of mycorrhizal fungi depend on the mycorrhizal symbionts.  more » « less
Award ID(s):
1754280
NSF-PAR ID:
10419947
Author(s) / Creator(s):
; ;
Editor(s):
Bouharroud, Rachid
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
4
ISSN:
1932-6203
Page Range / eLocation ID:
e0284631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper investigates the response of five tomato and five pepper varieties to native arbuscular mycorrhizal (AM) fungal inoculation in an organic farming system. The field experiment was conducted across a growing season at a working organic farm in Lawrence, KS, USA. The researchers hypothesized that native AM fungi inoculation would improve crop biomass production for both crop species, but that the magnitude of response would depend on crop cultivar. The results showed that both crops were significantly positively affected by inoculation. AM fungal inoculation consistently improved total pepper biomass throughout the experiment (range of +2% to +8% depending on the harvest date), with a +3.7% improvement at the final harvest for inoculated plants. An interaction between pepper variety and inoculation treatment was sometimes observed, indicating that some pepper varieties were more responsive to AM fungi than others. Beginning at the first harvest, tomatoes showed a consistent positive response to AM fungal inoculation among varieties. Across the experiment, AM fungi-inoculated tomatoes had +10% greater fruit biomass, which was driven by a +20% increase in fruit number. The study highlights the potential benefits of using native AM fungi as a soil amendment in organic farmed soils to improve pepper and tomato productivity.

     
    more » « less
  2. Abstract

    Animal pollination is critical for maintaining the reproduction and genetic diversity of many plant species, especially those in tropical ecosystems. Despite the threat to pollination posed by tropical deforestation, it remains an understudied process. In particular, little is known about these dynamics in multi‐paternal, successional plant species whose fruits can contain substantial genetic diversity. Given the importance of successional plants in reforestation, quantifying the factors that impact their reproduction is essential for understanding plant gene flow in the context of global change. In this study, we investigated pollen‐mediated gene flow at the multi‐paternal fruit level to quantify how tropical pollinators navigate and mediate gene flow in altered forests. Utilizing microsatellite genotyping and paternity analyses, we revealed that distinct plant neighborhood and individual factors drive pollen dispersal at the intra‐fruit scale. Variance in pollen dispersal distances was greater for neighborhoods with higher conspecific density, indicating that density dependent reproductive patterns play a role at this scale. Additionally, both the diversity and evenness of sires mediated by a single pollinator were affected by the size of the mother tree, that is, larger mothers received pollen from a less diverse, less even pool of sires per fruit. Pollinator body size was not found to be a significant driver of pollen dispersal, indicating that both small‐ and large‐bodied pollinators were equally important pollen dispersers at this scale. By exploring patterns of variation at the intra‐fruit level, we show that conspecific density and tree size significantly impact multi‐paternal pollen‐mediated gene flow, reinforcing the importance of investigating intraspecific, intra‐individual variance in plant reproduction.

     
    more » « less
  3. Abstract

    When the sexual system of a rare plant species is complex, characterizing floral development, plant morphology, and subpopulation structure is essential for assessing reproductive potential. Availability of pollinator rewards and positioning of sexual morphs within inflorescences relates to outcrossing potential. We studied the complex sexual system of the recently discoveredEuphorbia rosescensE.L. Bridges & Orzell, a rare species occurring in a single Florida county.Euphorbia rosescenshas both monomorphic subpopulations of female plants and mixed subpopulations with male and andromonoecious plants. Most data on cyathia sex, inflorescence architecture, floral visitors, and fruit set came from one female subpopulation and one mixed subpopulation. Cyathia longevity, flowering phase, nectar secretion, pollen production, and viability were measured in female, male, and hermaphrodite cyathia. Female plants had fewer inflorescence levels and cyathia and significantly smaller cyathia than male and andromonoecious plants. Andromonoecious plants were larger and produced more cyathia relative to male plants. Within mixed populations, sex switching occurred in both directions between male and andromonoecious plants. Female plants did not switch sexes. Proximal to distal inflorescence levels transitioned from hermaphrodite to male cyathia on andromonoecious plants. Nectar secretion corresponded to initiation of staminate flowering, but in female cyathia stigmas were receptive approximately a day before nectar secretion. Pollen production and viability were similar in male and hermaphrodite cyathia. Fruit maturation was minimal, primarily observed on andromonoecious plants. Nectar availability, pollen rewards, trimorphic inequalities in inflorescence display, and low fruit set suggest high geitonogamy, thus limiting outcrossing potential for this species.

     
    more » « less
  4. Abstract

    Species that persist in small populations isolated by habitat destruction may experience reproductive failure. Self‐incompatible plants face dual threats of mate‐limitation and competition with co‐flowering plants for pollination services. Such competition may lower pollinator visitation, increase heterospecific pollen transfer and reduce the likelihood that a visit results in successful pollination.

    To understand how isolation from mates and competition with co‐flowering species contribute to reproductive failure in fragmented habitat, we conducted an observational study of a tallgrass prairie perennialEchinacea angustifolia. We quantified the isolation of focal individuals from mates, characterized species richness and counted inflorescences within 1 m radius, observed pollinator visitation, collected pollinators, quantified pollen loads on pollinators and onEchinaceastigmas, and measured pollination success. Throughout the season, we sampled 223 focal plants across 10 remnant prairie sites.

    We present evidence that both co‐flowering species and isolation from mates substantially limit reproduction inEchinacea. As the flowering season progressed, the probability of pollinator visitation to focal plants decreased and evidence for pollen‐limited reproduction increased. Pollinators were most likely to visitEchinaceaplants from low‐richness floral neighbourhoods with close potential mates, or plants from high‐richness neighbourhoods with distant potential mates. Frequent visitation only increased pollination success in the former case, likely becauseEchinaceain high‐richness floral neighbourhoods received low‐quality visits.

    Synthesis. InEchinacea,reproduction was limited by isolation from potential mates and the richness of co‐flowering species. These aspects of the floral neighbourhood influenced pollinator visitation and pollination success, although conditions that predicted high visitation did not always lead to high pollination success. These results reveal how habitat modification and destruction, which influence floral neighbourhood and isolation from conspecific mates, can differentially affect various stages of reproductive biology in self‐incompatible plants. Our results suggest that prairie conservation and restoration efforts that promote patches of greater floral diversity may improve reproductive outcomes in fragmented habitats.

     
    more » « less
  5. Parasitic plants often attack multiple host species with unique defenses, physiology, and ecology. Reproductive phenology and vectors of parasitic plant genes (pollinators and dispersers) can contribute to or erode reproductive isolation of populations infecting different host species. We asked whether desert mistletoe, Phoradendron californicum (Santalaceae tribe Visceae syn. Viscaceae), differs ecologically across its dominant leguminous hosts in ways affecting reproductive isolation. Parasite flowering phenology on one host species (velvet mesquite, Prosopis velutina) differed significantly from that on four others, and phenology was not predicted by host species phenology or host individual. Comparing mistletoe populations on mesquite and another common host species (catclaw acacia, Senegalia greggii) for which genetically distinct host races are known, we tested for differences in interactions with vectors by quantifying pollinator visitation, reward production, pollen receipt, and fruit consumption. Mistletoes on mesquite produced more pollinator rewards per flower (1.86 times the nectar and 1.92 times the pollen) and received ~ 2 more pollen grains per flower than those on acacia. Mistletoes on the two host species interacted with distinct but overlapping pollinator communities, and pollinator taxa differed in visitation according to host species. Yet, mistletoes of neither host showed uniformly greater reproductive success. Fruit set (0.70) did not differ by host, and the rates of fruit ripening and removal differed in contrasting ways. Altogether, we estimate strong but asymmetric pre-zygotic isolating barriers between mistletoes on the two hosts. These host-associated differences in reproduction have implications for interactions with mutualist vectors and population genetic structure. 
    more » « less