skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VPPlus: Exploring the Potentials of Video Processing for Live Video Analytics at the Edge
Edge-assisted video analytics is gaining momentum. In this work, we tackle an important problem to compress video content live streamed from the device to the edge without scarifying accuracy and timeliness of its video analytics. We find that on-device processing can be tuned over a larger configuration space for more video compression, which was largely overlooked. Inspired by our pilot study, we design VPPlus to fulfill the potentials to compress the video as much as we can, while preserving analytical accuracy. VPPlus incorporates two core modules – offline profiling and online adaptation – to generate proper feedback automatically and quickly to tune on-device processing. We validate the effectiveness and efficiency of VPPlususing five object detection tasks over two popular datasets; VPPlus outperforms the state-of-art approaches in almost all the cases.  more » « less
Award ID(s):
1750953
PAR ID:
10419991
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep learning algorithms are an essential component of video analytics systems, in which the content of a video stream is analyzed. Although numerous studies target optimizing server-based video analysis, partially processing videos on edge devices is beneficial. Since edge devices are closer to data, they deliver initial insights on data before sending it to cloud. In this paper, we present an edge-tailored video analytics system by using a multi-stage network designed to run on heterogeneous computing resources. 
    more » « less
  2. Video analytics has many applications in traffic control, security monitoring, action/event analysis, etc. With the adoption of deep neural networks, the accuracy of video analytics in video streams has been greatly improved. However, deep neural networks for performing video analytics are compute-intensive. In order to reduce processing time, many systems switch to the lower frame rate or resolution. State-of-the-art switching approaches adjust configurations by profiling video clips on a large configuration space. Multiple configurations are tested periodically and the cheapest one with a desired accuracy is adopted. In this paper, we propose a method that adapts the configuration by analyzing past video analytics results instead of profiling candidate configurations. Our method adopts a lower/higher resolution or frame rate when objects move slow/fast. We train a model that automatically selects the best configuration. We evaluate our method with two real-world video analytics applications: traffic tracking and pose estimation. Compared to the periodic profiling method, our method achieves 3%-12% higher accuracy with the same resource cost and 8-17x faster with comparable accuracy. 
    more » « less
  3. Real-time video analytics typically require video frames to be processed by a query to identify objects or activities of interest while adhering to an end-to-end frame processing latency constraint. This imposes a continuous and heavy load on backend compute and network infrastructure. Video data has inherent redundancy and does not always contain an object of interest for a given query. We leverage this property of video streams to propose a lightweight Load Shedder that can be deployed on edge servers or on inexpensive edge devices co-located with cameras. The proposed Load Shedder uses pixel-level color-based features to calculate a utility score for each ingress video frame and a minimum utility threshold to select interesting frames to send for query processing. Dropping unnecessary frames enables the video analytics query in the backend to meet the end-to-end latency constraint with fewer compute and network resources. To guarantee a bounded end-to-end latency at runtime, we introduce a control loop that monitors the backend load and dynamically adjusts the utility threshold. Performance evaluations show that the proposed Load Shedder selects a large portion of frames containing each object of interest while meeting the end-to-end frame processing latency constraint. Furthermore, it does not impose a significant latency overhead when running on edge devices with modest compute resources. 
    more » « less
  4. With increasingly deployed cameras and the rapid advances of Computer Vision, large-scale live video analytics becomes feasible. However, analyzing videos is compute-intensive. In addition, live video analytics needs to be performed in real time. In this paper, we design an edge server system for live video analytics. We propose to perform configuration adaptation without profiling video online. We select configurations with a prediction model based on object movement features. In addition, we reduce the latency through resource orchestration on video analytics servers. The key idea of resource orchestration is to batch inference tasks that use the same CNN model, and schedule tasks based on a priority value that estimates their impact on the total latency. We evaluate our system with two video analytic applications, road traffic monitoring and pose detection. The experimental results show that our profiling-free adaptation reduces the workload by 80% of the state-of-the-art adaptation without lowering the accuracy. The average serving latency is reduced by up to 95% comparing with the profiling-based adaptation. 
    more » « less
  5. Driven by advances in computer vision and the falling costs of camera hardware, organizations are deploying video cameras en masse for the spatial monitoring of their physical premises. Scaling video analytics to massive camera deployments, however, presents a new and mounting challenge, as compute cost grows proportionally to the number of camera feeds. This paper is driven by a simple question: can we scale video analytics in such a way that cost grows sublinearly, or even remains constant, as we deploy more cameras, while inference accuracy remains stable, or even improves. We believe the answer is yes. Our key observation is that video feeds from wide-area camera deployments demonstrate significant content correlations (e.g. to other geographically proximate feeds), both in space and over time. These spatio-temporal correlations can be harnessed to dramatically reduce the size of the inference search space, decreasing both workload and false positive rates in multi-camera video analytics. By discussing use-cases and technical challenges, we propose a roadmap for scaling video analytics to large camera networks, and outline a plan for its realization. 
    more » « less