skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi‐Instrument Observations of the Effects of a Solar Wind Pressure Pulse on the High Latitude Ionosphere: A Detailed Case Study of a Geomagnetic Sudden Impulse
Abstract The effects of a solar wind pressure pulse on the terrestrial magnetosphere have been observed in detail across multiple datasets. The communication of these effects into the magnetosphere is known as a positive geomagnetic sudden impulse (+SI), and are observed across latitudes and different phenomena to characterize the propagation of +SI effects through the magnetosphere. A superposition of Alfvén and compressional propagation modes are observed in magnetometer signatures, with the dominance of these signatures varying with latitude. For the first time, collocated lobe reconnection convection vortices and region 0 field aligned currents are observed preceding the +SI onset, and an enhancement of these signatures is observed as a result of +SI effects. Finally, cusp auroral emission is observed collocated with the convection and current signatures. For the first time, simultaneous observations across multiple phenomena are presented to confirm models of +SI propagation presented previously.  more » « less
Award ID(s):
2002574
PAR ID:
10420277
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
3
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polar cap ionospheric plasma flow studies often focus on large‐scale averaged properties and neglect the mesoscale component. However, recent studies have shown that mesoscale flows are often found to be collocated with airglow patches. These mesoscale flows are typically a few hundred meters per second faster than the large‐scale background and are associated with major auroral intensifications when they reach the poleward boundary of the nightside auroral oval. Patches often also contain ionospheric signatures of enhanced field‐aligned currents and localized electron flux enhancements, indicating that patches are associated with magnetosphere‐ionosphere coupling on open field lines. However, magnetospheric measurements of this coupling are lacking, and it has not been understood what the magnetospheric signatures of patches on open field lines are. The work presented here explores the magnetospheric counterpart of patches and the role these structures have in plasma transport across the open field‐line region in the magnetosphere. Using red‐line emission measurements from the Resolute Bay Optical Mesosphere Thermosphere Imager, and magnetospheric measurements made by the Cluster spacecraft, conjugate events from 2005 to 2009 show that lobe measurements on field lines connected to patches display (1) electric field enhancements, (2) Region 1 sense field‐aligned currents, (3) field‐aligned enhancements in soft electron flux, (4) downward Poynting fluxes, and (5) in some cases enhancements in ion flux, including ion outflows. These observations indicate that patches highlight a localized fast flow channel system that is driven by the magnetosphere and propagates from the dayside to the nightside, most likely being initiated by enhanced localized dayside reconnection. 
    more » « less
  2. Abstract We analyzed the magnetospheric global response to dynamic pressure pulses (DPPs) using the Heliophysics System Observatory (HSO) and ground magnetometers. During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed “cavity” and reacts to solar wind DPPs more simply than during southward IMF. In this study we use solar wind data collected by ACE and WIND together with magnetic field observations of Geotail, Cluster, Time History of Events and Macroscale Interactions during Substorms (THEMIS), Magnetospheric Multiscale Mission (MMS), Van Allen Probes, GOES missions, and ground magnetometer arrays to observe the magnetosphere (dayside, nightside, inner magnetosphere, magnetotail, magnetosheath, etc.) and ionosphere response simultaneously in several local time sectors and regions. A total of 37 events were selected during the period between February 2007 to December 2017. We examine the global response of each event and identify systematic behavior of the magnetosphere due to DPPs' compression, such as MHD wave propagation, sudden impulses, and Ultra Low Frequency waves (ULF) in the Pc5 range. Our results confirm statistical studies with a more limited coverage that have been performed at different sectors and/or regions of the magnetosphere. We present observations of the different signatures generated in different regions that propagate through the magnetosphere. The signature of the tailward traveling DPP is observed to move at the same solar wind speed, and in superposition of other known magnetospheric perturbations. It is observed that the DPP also generates or increases the amplitude of Pc4‐5 waves observed in the inner magnetosphere, while similar waves are observed on the ground. 
    more » « less
  3. Abstract Silicon stable isotope ratios (30Si) of over 150 stream water samples were measured during seven storm events in six small critical zone observatory (CZO) catchments spanning a wide range in climate (sub‐humid to wet, tropical) and lithology (granite, volcanic, and mixed sedimentary). Here we report a cross‐site analysis of this dataset to gain insight into stream30Si variability across low‐order catchments and to identify potential climate (i.e., runoff), hydrologic, lithologic, and biogeochemical controls on observed stream Si chemical and isotopic signatures. Event‐based30Si exhibit variability both within and across sites (−0.22‰ to +2.27‰) on the scale of what is observed globally in both small catchments and large rivers. Notably, each site shows distinct30Si signatures that are preserved even after normalization for bedrock composition. Successful characterization of observed cross‐site behavior requires the merging of two distinct frameworks in a novel combined model describing both non‐uniform fluid transit time distributions and multiple fractionating pathways in application to low‐order catchments. The combined model reveals that site‐specific architecture (i.e., biogeochemical reaction pathways and hydrologic routing) regulates stream silicon export signatures even when subject to extreme precipitation events. 
    more » « less
  4. The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. It has been suggested to open a fast energy transport channel for the solar wind to invade Earth’s magnetosphere under northward interplanetary magnetic field (IMF) conditions. It is, therefore, an important phenomenon to understand the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. In this study, we report the three-dimensional ionospheric plasma properties of a space hurricane event in the Northern Hemisphere observed by multiple instruments. Based on the convection velocity observations from ground-based radars and polar satellites, we confirm that the major modulation to the polar cap convection called a space hurricane rotates clockwise at the altitude of the ionosphere. Ground-based incoherent scatter radar and polar satellite observations reveal four features associated with the space hurricane: 1) strong plasma flow shears and being embedded in a clockwise lobe convection cell; 2) a major addition to the total energy deposition in the ionosphere–thermosphere system by Joule heating; 3) downward ionospheric electron transport; and 4) multiple ion-temperature enhancements in the sunward velocity region, likely from the spiral arms of the space hurricane. These results present, first, the impact of space hurricane on the low-altitude ionosphere and provide additional insights on the magnetospheric impact on structuring in the polar ionosphere. 
    more » « less
  5. Abstract Interplanetary (IP) shock‐driven sudden compression of the Earth's magnetosphere produces electromagnetic disturbances in the polar ionosphere. Several studies have examined the effects of IP shock on magnetosphere‐ionosphere coupling systems using all‐sky cameras and radars. In this study, we examine responses and drivers of the polar ionosphere following an IP shock compression on 16 June 2012. We observe the vertical drift and concurrent horizontal motion of the plasma. Observations from digisonde located at Antarctic Zhongshan station (ZHO) showed an ionospheric thickEregion ionization and associated vertical downward plasma motion atFregion. In addition, horizontal ionospheric convection reversals were observed on the Super Dual Auroral Radar Network ZHO and McMurdo radar observations. Findings suggest that the transient convective reversal breaks the original shear equilibrium, it is expected that the IP shock‐induced electric field triggers an enhanced velocity shear mapping to theEregion. The horizontal motion of the plasma was attributed to only the dusk‐to‐dawn electric field that existed during the preliminary phase of sudden impulse. We also found that ionospheric convection reversals were driven by a downward field‐aligned current. The results of these observations reveal, for the first time, the immediate and direct cusp ionosphere response to the IP shock, which is critical for understanding the global response of the magnetosphere following an abrupt change in Interplanetory Magnetic Field (IMF) and solar wind conditions. 
    more » « less