Abstract The mechanical processes that convert an initially fluffy chondrule fine-grained rim (FGR) into a more compact structure remain poorly characterized. Given the presence of shocks in protoplanetary disks, we use numerical simulations to test the hypothesis that dust-laden shocks in the solar nebula contributed to FGR modification. We use the iSALE2D shock physics code to model the collision of dusty nebular shock fronts (which we term “dust clouds”) into chondrule surfaces that host a porous FGR. In our simulations, dust particles are modeled as dunite disks. The dust radii follow the Mathis–Rumpl–Nordsieck distribution of interstellar grains. Chondrules are modeled as rectangular dunite slabs. We vary the impact speedvimp, the fractional abundancefcloudof dust grains in the impacting shock, and the fractional abundancefFGRof dust grains in the pre-existing FGR. We thus compute dust temperatures and pressures resulting from the collisions, as well as the net mass accretion of dust by the FGRs. Dust temperatures increase upon impact, depending on the kinetic energy of the dust cloud and onfFGR. Dust rims with a higherfFGRheat up more than those with a lowerfFGR, with possibly important implications for the composition and structure of FGRs. Maximum impact pressures increase withfcloud. Fine-grained rims can experience mass gain from the impacting cloud, but in some instances, mass is lost from the rim. We find qualitative similarities in the topography of the FGR–chondrule interface between our simulations and petrographic analyses of the Paris CM chondrite by other authors.
more »
« less
Modeling Chondrule Dust Rim Growth with Ellipsoidal Monomers
Abstract Fine-grained dust rims (FGRs) surrounding chondrules in carbonaceous chondrites encode important information about early processes in the solar nebula. Here, we investigate the effect of the nebular environment on FGR porosity, dust size distribution, and grain alignment, comparing the results for rims comprised of ellipsoidal and spherical grains. We conduct numerical simulations in which FGRs grow by collisions between dust particles and chondrules in both neutral and ionized turbulent gas. The resultant rim morphology is related to the ratioϵof the electrostatic potential energy at the collision point to the relative kinetic energy between colliding particles. In general, largeϵleads to a large rim porosity, large rim grain size, and low growth rate. Dust rims comprised of ellipsoidal monomers initially grow faster in thickness than rims comprised of spherical monomers, due to their higher porosity. As the rims grow and obtain a greater electrostatic potential, repulsion becomes dominant, and this effect is reversed. Grain size coarsening toward the outer regions of the rims is observed for low- and high-ϵregimes, and is more pronounced in the ellipsoidal case, while for the medium-ϵregime, small monomers tend to be captured in the middle of the rims. In neutral environments, ellipsoidal grains have random orientations within the rim, while in charged environments ellipsoidal grains tend to align with maximum axial alignment forϵ= 0.15. The characterization of these FGR features provides a means to relate laboratory measurements of chondrite samples to the formation environment of the parent bodies.
more »
« less
- Award ID(s):
- 2008493
- PAR ID:
- 10420279
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 11
- Size(s):
- Article No. 11
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Circumstellar disk dust polarization in the (sub)millimeter is, for the most part, not from dust grain alignment with magnetic fields but rather indicative of a combination of dust self-scattering with a yet unknown alignment mechanism that is consistent with mechanical alignment. While the observational evidence for scattering has been well established, that for mechanical alignment is less so. Circum-multiple dust structures in protostellar systems provide a unique environment to probe different polarization alignment mechanisms. We present ALMA Band 4 and Band 7 polarization observations toward the multiple young system L1448 IRS3B. The polarization in the two bands are consistent with each other, presenting multiple polarization morphologies. On the size scale of the inner envelope surrounding the circum-multiple disk, the polarization is consistent with magnetic field dust grain alignment. On the very small scale of compact circumstellar regions, we see polarization that is consistent with scattering around sourceaandc, which are likely the most optically thick components. Finally, we see polarization that is consistent with mechanical alignment of dust grains along the spiral dust structures, which would suggest that the dust is tracing the relative gas flow along the spiral arms. If the gas-flow dust grain alignment mechanism is dominant in these cases, disk dust polarization may provide a direct probe of the small-scale kinematics of the gas flow relative to the dust grains.more » « less
-
The polarisation of light induced by aligned interstellar dust serves as a significant tool in investigating cosmic magnetic fields and dust properties, while posing a challenge in characterising the polarisation of the cosmic microwave background and other sources. To establish dust polarisation as a reliable tool, the physics of the grain alignment process must be studied thoroughly. The magnetically enhanced radiative torque (MRAT) alignment is the only mechanism that can induce highly efficient alignment of grains with magnetic fields required by polarisation observations of the diffuse interstellar medium. Here, we aim to test the MRAT mechanism in starless cores using the multi-wavelength polarisation from optical to submillimetre. Our numerical modelling of dust polarisation using the MRAT theory demonstrates that the alignment efficiency of starlight polarisation (pext/AV) and the degree of thermal dust polarisation (pem) first decrease slowly with increasing visual extinction (AV) and then fall steeply as ∝Av-1at largeAVdue to the loss of grain alignment, which explains the phenomenon known as polarisation holes. Visual extinction at the transition from shallow to steep slope (AVloss) increases with maximum grain size. By applying physical profiles suitable for a starless core, 109 in the Pipe nebula (Pipe-109), our model successfully reproduces the existing observations of starlight polarisation in the R band (0.65 μm) and the H band (1.65 μm), as well as emission polarisation in the submillimetre (870 μm). Successful modelling of observational data requires perfect alignment of large grains, which serves as evidence for the MRAT mechanism, and an increased maximum grain size with higher elongation at higherAV. The latter reveals the first evidence for a new model of anisotropic grain growth induced by magnetic grain alignment. This paper introduces the framework for probing the fundamental physics of grain alignment and dust evolution using multi-wavelength dust polarisation (GRADE-POL), and it is the first of our GRADE-POL series.more » « less
-
Abstract The alignment of dust grains with the ambient magnetic field produces polarization of starlight as well as thermal dust emission. Using the archival SOFIA/HAWC+ polarimetric data observed toward the ρ Ophiuchus (Oph) A cloud hosted by a B star at 89 and 154 μ m, we find that the fractional polarization of thermal dust emission first increases with the grain temperature and then decreases once the grain temperature exceeds ≃25–32 K. The latter trend differs from the prediction of the popular RAdiative Torques (RATs) alignment theory, which implies a monotonic increase of the polarization fraction with the grain temperature. We perform numerical modeling of polarized dust emission for the ρ Oph-A cloud and calculate the degree of dust polarization by simultaneously considering the dust grain alignment and rotational disruption by RATs. Our modeling results could successfully reproduce both the rising and declining trends of the observational data. Moreover, we show that the alignment of only silicate grains or a mixture of silicate–carbon grains within a composite structure can reproduce the observational trends, assuming that all dust grains follow a power-law size distribution. Although there are a number of simplifications and limitations to our modeling, our results suggest grains in the ρ Oph-A cloud have a composite structure, and the grain size distribution has a steeper slope than the standard size distribution for the interstellar medium. Combination of SOFIA/HAWC+ data with JCMT observations 450 and 850 μ m would be useful to test the proposed scenario based on grain alignment and disruption by RATs.more » « less
-
Abstract Radio images of protoplanetary disks demonstrate that dust grains tend to organize themselves into rings. These rings may be a consequence of dust trapping within gas pressure maxima, wherein the local high dust-to-gas ratio is expected to trigger the formation of planetesimals and eventually planets. We revisit the behavior of dust near gas pressure perturbations enforced by a planet in two-dimensional, shearing-box simulations. While dust grains collect into generally long-lived rings, particles with a small Stokes parameter τ s < 0.1 tend to advect out of the ring within a few drift timescales. Scaled to the properties of ALMA disks, we find that rings composed of larger particles ( τ s ≥ 0.1) can nucleate a dust clump massive enough to trigger pebble accretion, which proceeds to ingest the entire dust ring well within ∼1 Myr. To ensure the survival of the dust rings, we favor a nonplanetary origin and typical grain size τ s ≲ 0.05–0.1. Planet-driven rings may still be possible but if so we would expect the orbital distance of the dust rings to be larger for older systems.more » « less
An official website of the United States government
