skip to main content

Title: Lipid production and cellular changes in Fremyella diplosiphon exposed to nanoscale zerovalent iron nanoparticles and ampicillin

With the dramatic decrease in fossil fuel stocks and their detrimental effects on the environment, renewable energy sources have gained imminent importance in the mitigation of emissions. As lipid-enriched energy stocks, cyanobacteria are the leading group of microorganisms contributing to the advent of a new energy era. In the present study, the impact of Nanofer 25 s nanoscale zero-valent iron nanoparticles (nZVIs) and ampicillin on lipid production and cellular structural changes inFremyella diplosiphonstrain B481-SD were investigated. Total lipid abundance, fatty acid methyl ester (FAME) compositions, and alkene production as detected by high-resolution two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC/TOF–MS) was significantly higher (p < 0.05) in the individual application of 0.8 mg/L ampicillin, 3.2 mg/L nZVIs, and a combined regimen of 0.8 mg/L ampicillin and 3.2 mg/L nZVIs compared to the untreated control. In addition, we identified significant increases (p < 0.05) in monounsaturated fatty acids (MUFAs) inF. diplosiphontreated with the combination regimen compared to the untreated control, 0.8 mg/L of ampicillin, and 3.2 mg/L of nZVIs. Furthermore, individual treatment with 0.8 mg/L ampicillin and the combination regimen (0.8 mg/L ampicillin + 3.2 mg/L nZVIs) significantly increased (p < 0.05) Nile red fluorescence compared to the untreated control, indicating neutral membrane lipids to be the main target of ampicillin added treatments. Transmission electron microscopy studies revealed the presence of single-layered thylakoid membranes in the untreated control, while complex stacked membranes of 5–8 layers were visualized in ampicillin and nZVI-treatedF. diplosiphon. Our results indicate that nZVIs in combination with ampicillin significantly enhanced total lipids, essential FAMEs, and alkenes inF. diplosiphon. These findings offer a promising approach to augment the potential of using the strain as a large-scale biofuel agent.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Microbial Cell Factories
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fremyella diplosiphon is an ideal third-generation biofuel source due to its ability to produce transesterified lipids. While nanofer 25s zero-valent iron nanoparticles (nZVIs) improve lipid production, an imbalance between reactive oxygen species (ROS) and cellular defense can be catastrophic to the organism. In the present study, the effect of ascorbic acid on nZVI and UV-induced stress in F. diplosiphon strain B481-SD was investigated, and lipid profiles in the combination regimen of nZVIs and ascorbic acid compared. Comparison of F. diplosiphon growth in BG11 media amended with 2, 4, 6, 8, and 10 mM ascorbic acid indicated 6 mM to be optimal for the growth of B481-SD. Further, growth in 6 mM ascorbic acid combined with 3.2 mg/L nZVIs was significantly higher when compared to the combination regimen of 12.8 and 51.2 mg/L of nZVIs and 6 mM ascorbic acid. The reversal effect of UV-B radiation for 30 min and 1 h indicated that ascorbic acid restored B481-SD growth. Transesterified lipids characterized by gas chromatography–mass spectrometry indicated C16 hexadecanoate to be the most abundant fatty acid methyl ester in the combination regimen of 6 mM ascorbic acid and 12.8 mg/L nZVI-treated F. diplosiphon. These findings were supported by microscopic observations in which cellular degradation was observed in B481-SD cells treated with 6 mM ascorbic acid and 12.8 mg/L nZVIs. Our results indicate that ascorbic acid counteracts the damaging effect of oxidative stress produced by nZVIs. 
    more » « less
  2. Dr. Krishna Ganesh (Ed.)
    Nanoscale zero-valent iron nanoparticles (nZVIs) are known to boost biomass production and lipid yield in Fremyella diplosiphon, a model biodiesel-producing cyanobacterium. However, the impact of nZVI-induced reactive oxygen species (ROS) in F. diplosiphon has not been evaluated. In the present study, ROS in F. diplosiphon strains (B481-WT and B481-SD) generated in response to nZVI-induced oxidative stress were quantified and the enzymatic response determined. Lipid peroxidation as a measure of oxidative stress revealed significantly higher malondialdehyde content (p < 0.01) in both strains treated with 3.2, 12.8, and 51.2 mg L–1 nZVIs compared to untreated control. In addition, ROS in all nZVI-treated cultures treated with 1.6–25.6 mg L–1 nZVIs was significantly higher than the untreated control as determined by the 2′,7′-dichlorodihydrofluorescein diacetate fluorometric probe. Immunodetection using densitometric analysis of iron superoxide dismutase (SOD) revealed significantly higher SOD levels in both strains treated with nZVIs at 51.2 mg L–1. In addition, we observed significantly higher (p < 0.001) SOD levels in the B481-SD strain treated with 6.4 mg L−1 nZVIs compared to 3.2 mg L–1 nZVIs. Validation using transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy (EDS) revealed adsorption of nZVIs with a strong iron peak in both B481-WT and B481-SD strains. While the EDS spectra showed strong signals for iron at 4 and 12 days after treatment, a significant decrease in peak intensity was observed at 20 days. Future efforts will be aimed at studying transduction mechanisms that cause metabolic and epigenetic alterations in response to nZVIs in F. diplosiphon. 
    more » « less
  3. Fremyella diplosiphon is a well-studied a model cyanobacterium for photosynthesis due to its efficient light absorption potential and pigment accumulation. In the present study, the impact of ampicillin, tetracycline, kanamycin, and cefotaxime on pigment fluorescence and photosynthetic capacity in Fremyella diplosiphon strains B481-WT and B481-SD was investigated. Our results indicated that both strains exposed to kanamycin from 0.2 to 3.2 mg/L and tetracycline from 0.8 to 12.8 mg/L enhanced growth and pigment accumulation. Additionally, B481-SD treated with 0.2–51.2 mg/L ampicillin resulted in a significant enhancement of pigment fluorescence. A detrimental effect on growth and pigmentation in both the strains exposed to 6.4–102.5 mg/L kanamycin and 0.8–102.5 mg/L cefotaxime was observed. Detection of reactive oxygen species revealed highest levels of oxidative stress at 51.2 and 102.5 mg/L kanamycin for B481- SD and 102.5 mg/L for B481-WT. Membrane permeability detected by lactate dehydrogenase assay indicated maximal activity at 0.8 mg/L ampicillin, kanamycin, and tetracycline treatments on day 6. Abundant vacuolation, pyrophosphate, and cyanophycin granule formation were observed in treated cells as a response to antibiotic stress. These findings on the hormetic effect of antibiotics on F. diplosiphon indicate that optimal antibiotic concentrations induce cellular growth while high concentrations severely impact cellular functionality. Future studies will be aimed to enhance cellular lipid productivity at optimal antibiotic concentrations to disintegrate the cell wall, thus paving the way for clean bioenergy applications. 
    more » « less
  4. Metabolic products such as lipids and proteins produced in cyanobacteria represent an excellent source of biomass and do not compete with agricultural land use unlike soybean and corn. Given their potential use as novel materials for biodiesel production, we aimed to explore the e ect of cultivation period and nitrogen concentration on the growth rate and lipid content of Fremyella diplosiphon, a model cyanobacterium. In this study, F. diplosiphon grown in BG11/HEPES medium supplemented with 1.5 g L􀀀1 sodium nitrate (NaNO3) for 7, 10, 15, and 20 days were compared to the untreated control in media amended with 0.25, 0.5, and 1.0 g L􀀀1 NaNO3. Cultures were inoculated in liquid media and grown under continuous fluorescent light in an orbital incubator shaker, and extracted lipids subjected to gravimetric analysis and gas chromatography-mass spectroscopy to determine the best culture conditions for lipid production. Our results demonstrated that a reduction in nitrogen concentration had no significant effect on the growth rate across all cultivation periods; however, the accumulation of total lipid content was significantly influenced by nitrogen concentration. A maximum lipid production (40%) with no reduction in growth was observed in 10-day old cultures in a BG11/HEPES medium supplemented with 1.0 g L􀀀1 NaNO3. Fatty acid methyl ester composition of transesterified lipids demonstrated high amounts of methyl palmitate (50–70%) followed by methyl octadecenoate (17–30%) in the accumulated lipids at all treatments. Trace quantities of methyl dodecanoate, methyl hexadecanoate, methyl octadecanoate, and methyl octadecadienoate (1–8%) were also observed in all tested samples, indicating that nitrogen deprivation in culture media increases lipid production without affecting growth. 
    more » « less
  5. The use of renewable energy to reduce fossil fuel consumption is a key strategy to mitigate pollution and climate change, resulting in the growing demand for new sources. Fast-growing proprietary cyanobacterial strains of Fremyella diplosiphon with an average life cycle of 7–10 days, and a proven capacity to generate lipids for biofuel production are currently being studied. In this study, we investigated the growth and photosynthetic pigmentation of a cyanobacterial strain (SF33) in both greenhouse and outdoor bioreactors, and produced biocrude via hydrothermal liquefaction. The cultivation of F. diplosiphon did not significantly differ under suboptimal conditions (p < 0.05), including in outdoor bioreactors with growth differences of less than 0.04 (p = 0.035) among various batches. An analysis of the biocrude’s components revealed the presence of fatty acid biodiesel precursors such as palmitic acid and behenic acid, and alkanes such as hexadecane and heptadecane, used as biofuel additives. In addition, the quantification of value-added photosynthetic pigments revealed chlorophyll a and phycocyanin concentrations of 0.0011 ± 5.83 × 10−5 µg/µL and 7.051 ± 0.067 µg/µg chlorophyll a. Our results suggest the potential of F. diplosiphon as a robust species that can grow at varying temperatures ranging from 13 °C to 32 °C, while producing compounds for applications ranging from biofuel to nutritional supplements. The outcomes of this study pave the way for production-level scale-up and processing of F. diplosiphon-derived biofuels and marketable bioproducts. Fuel produced using this technology will be eco-friendly and cost-effective, and will make full use of the geographical location of regions with access to brackish waters. 
    more » « less