Efforts to reduce riverine phosphorus (P) loads have not been as fruitful as expected or hoped. One reason for the failure of these efforts appears to be that models used for watershed P management have understated and misrepresented the role of in‐stream processes in shaping watershed P export. Here, we update the latest release of the Soil and Water Assessment Tool (SWAT+), a widely used watershed management model, to better represent in‐stream P retention and remobilization (SWAT+P.R&R). We add new streambed pools where P is stored and tracked, and we incorporate three new processes driving in‐stream P dynamics: (a) deposition and resuspension of sediment‐associated P, (b) diffusion of dissolved P between the water column and streambed, and (c) adsorption and desorption of mineral P. The objective of this modeling work is to provide a diagnostic tool that enables researchers to challenge existing assumptions regarding how watersheds store, transform, and transport P. Here, in a first diagnostic analysis, SWAT+P.R&R helps reconcile in‐stream P retention theory (that P is retained at low flows and remobilized at high flows) and a discordant data set in our validation watershed. SWAT+P.R&R results (a) clarify that the theorized relationship between P retention and flow is only valid (for this point‐source affected testbed, at least) at the temporal scale of a single rising‐or‐falling hydrograph limb and (b) illustrate that hysteresis obscures the relationship at longer temporal scales. Future work using SWAT+P.R&R could further challenge assumptions regarding timescales of in‐stream P legacies and sources of P load variability.
more » « less- Award ID(s):
- 1739788
- PAR ID:
- 10420327
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 59
- Issue:
- 3
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This study attempts to integrate a Surface Water (SW) model Soil and Water Assessment Tool (SWAT) with an existing steady-state, single layer, unconfined heterogeneous aquifer Analytic Element Method (AEM) based Ground Water (GW) model, named Bluebird AEM engine, for a comprehensive assessment of SW and GW resources and its management. The main reason for integrating SWAT with the GW model is that the SWAT model does not simulate the distribution and dynamics of GW levels and recharge rates. To overcome this issue, often the SWAT model is coupled with the numerical GW model (either using MODFLOW or FEFLOW), wherein the spatial and temporal patterns of the interactions are better captured and assessed. However, the major drawback in integrating the two models (SWAT with—MODFLOW/FEM) is its conversion from Hydrological Response Unit’s (HRU)/sub-basins to grid/elements. To couple them, a spatial translation system is necessary to move the inputs and outputs back and forth between the two models due to the difference in discretization. Hence, for effective coupling of SW and GW models, it may be desirable to have both models with a similar spatial discretization and reduce the need for rigorous numerical techniques for solving the PDEs. The objective of this paper is to test the proof of concept of integrating a distributed hydrologic model with an AEM model at the same spatial units, primarily focused on surface water and groundwater interaction with a shallow unconfined aquifer. Analytic Element Method (AEM) based GW models seem to be ideal for coupling with SWAT due to their innate character to consider the HRU, sub-basin, River, and lake boundaries as individual analytic elements directly without the need for any further discretization or modeling units. This study explores the spatio-temporal patterns of groundwater (GW) discharge rates to a river system in a moist-sub humid region with SWAT-AEM applied to the San Jacinto River basin (SJRB) in Texas. The SW-GW interactions are explored throughout the watershed from 2000–2017 using the integrated SWAT-AEM model, which is tested against stream flow and GW levels. The integrated SWAT-AEM model results show good improvement in predicting the stream flow (R2 = 0.65–0.80) and GW levels as compared to the standalone SWAT model. Further, the integrated model predicted the low flows better compared to the standalone SWAT model, thus accounting for the SW-GW interactions. Almost 80% of the stream network experiences an increase in groundwater discharge rate between 2000 and 2017 with an annual average GW discharge rate of 1853 Mm3/year. The result from the study seems promising for potential applications of SWAT-AEM coupling in regions with considerable SW-GW interactions.more » « less
-
Abstract. Salinity is one of the most common water quality threats in riverbasins and irrigated regions worldwide. However, no available numericalmodels simulate all major processes affecting salt ion fate and transport at the watershed scale. This study presents a new salinity module for the SWAT model that simulates the fate and transport of eight major salt ions(SO42-, Ca2+, Mg2+, Na+, K+, Cl−,CO32-, HCO3-) in a watershed system. The module accountsfor salt transport in surface runoff, soil percolation, lateral flow,groundwater, and streams, and equilibrium chemistry reactions in soil layersand the aquifer. The module consists of several new subroutines that areimbedded within the SWAT modelling code and one input file containing soilsalinity and aquifer salinity data for the watershed. The model is appliedto a 732 km2 salinity-impaired irrigated region within the ArkansasRiver Valley in southeastern Colorado and tested against root zone soilsalinity, groundwater salt ion concentration, groundwater salt loadings tothe river network, and in-stream salt ion concentration. The model can be auseful tool in simulating baseline salinity transport and investigatingsalinity best management practices in watersheds of varying spatial scales.more » « less
-
Abstract Urbanization increases stormwater runoff into streams, resulting in channel erosion, and increases in sediment and nutrient delivery to receiving water bodies. Stream restoration is widely used as a Best Management Practice to stabilize banks and reduce sediment and nutrient loads. While most instream nutrient retention measurements are often limited to low flow conditions, most of the nutrient load is mobilized at high stream flows in urban settings. We, therefore, use a process‐based stream ecosystem model in conjunction with measurements at low flows and focus on estimation of stream nitrogen retention over the full streamflow distribution. The model provides a theoretical framework to evaluate the geomorphic, hydrologic, and ecological factors that are manipulated by stream restoration, and drive nitrogen retention. We set a model for a pool‐riffle sequence restored stream (190 m) in Baltimore County, Maryland and calibrated the model to the
in situ measured primary production (Nash–Sutcliffe model efficiency coefficient [NSE] NSE = 0.89), respiration (NSE = 0.74), and nitrate uptake lengths (R 2 = 0.88). At the daily scale, simulations showed low nitrogen retention during high flows due to high transport rates, mobilization of stored hyporheic nitrogen, and scouring of periphyton biomass. This result underscores the need to reduce contributing watershed runoff flashiness to promote aquatic nutrient cycling and retention. At monthly and yearly time scale, model predicted a higher percent reduction in summer than in winter and estimated 5.7%–9.5% of annual nitrate reductions. While the model was tested in a pool‐riffle sequence restoration design, the approach can be adapted to evaluate a range of channel restoration design characteristics, and the effects of upland watershed restoration to mitigate stormwater loading through both restored and unrestored streams. -
Computer simulation models are a useful tool in planning, enabling reliable yet affordable what-if scenario analysis. Many simulation models have been proposed and used for urban planning and management. Still, there are a few modeling options available for the purpose of evaluating the effects of various stormwater control measures (SCM), including LID (low-impact development) controls (green roof, rain garden, porous pavement, rainwater harvesting), upland off-line controls (sedimentation, filtration, retention–irrigation) and online controls (detention, wet pond). We explored the utility and potential of the Soil and Water Assessment Tool (SWAT) as a modeling tool for urban stormwater planning and management. This study demonstrates how the hydrologic modeling strategies of SWAT and recent enhancements could help to develop efficient measures for solving urban stormwater issues. The case studies presented in this paper focus on urban watersheds in the City of Austin (COA), TX, where rapid urbanization and population growth have put pressure on the urban stormwater system. Using the enhanced SWAT, COA developed a framework to assess the impacts on erosion, flooding, and aquatic life due to changes in runoff characteristics associated with land use changes. Five catchments in Austin were modeled to test the validity of the SWAT enhancements and the analytical framework. These case studies demonstrate the efficacy of using SWAT and the COA framework to evaluate the impacts of changes in hydrology and the effects of different regulatory schemes.more » « less
-
Abstract Small streams often lack reliable hydrological data. Environmental agencies play a key role in providing such data; however, these agencies are often challenged by the growing monitoring needs and lack of funding. Given the spatial mismatch between observed data and small watersheds/headwaters, local volunteers can act as potentially valuable research partners. We examine how CrowdHydrology, a citizen science program that collects stream stage and stream temperature observations, improves a hydrologic model of the Boyne River, Michigan, USA. Volunteers provided observations at four calibration sites with different interarrival times of the observations. We tested whether stream stage and stream temperature observations (measured by volunteers) improved the performance of a Soil and Water Assessment Tool (SWAT) model of the Boyne River. Observations were integrated into the model using the ensemble Kalman filter. This framework allowed us to integrate observation error, track the variability of model parameters, and simulate daily streamflow and stream temperature across the watershed. Measures of daily model performance included the Nash‐Sutcliffe efficiency, modified Nash‐Sutcliffe efficiency (
E f‐mod ), refined index of agreement (d r ), and relative bias (Bias ). For all calibration sites, estimates of streamflow improved after data assimilation compared to simulations based on initial/default SWAT parameters. Different measures of model performance emerged based on the interarrival times of the observations. Results demonstrate that observations collected by local volunteers, with a certain temporal resolution, can improve SWAT hydrological models and capture central tendency.