skip to main content


Title: Adaptive Risk-Limiting Comparison Audits
Risk-limiting audits (RLAs) are rigorous statistical procedures meant to detect invalid election results. RLAs examine paper ballots cast during the election to statistically assess the possibility of a disagreement between the winner determined by the ballots and the winner reported by tabulation. The design of an RLA must balance risk against efficiency: "risk" refers to a bound on the chance that the audit fails to detect such a disagreement when one occurs; "efficiency" refers to the total effort to conduct the audit. The most efficient approaches—when measured in terms of the number of ballots that must be inspected—proceed by "ballot comparison." However, ballot comparison requires an (untrusted) declaration of the contents of each cast ballot, rather than a simple tabulation of vote totals. This "cast-vote record table" (CVR) is then spot-checked against ballots for consistency. In many practical settings, the cost of generating a suitable CVR dominates the cost of conducting the audit which has prevented widespread adoption of these sample-efficient techniques. We introduce a new RLA procedure: an "adaptive ballot comparison" audit. In this audit, a global CVR is never produced; instead, a three-stage procedure is iterated: 1) a batch is selected, 2) a CVR is produced for that batch, and 3) a ballot within the batch is sampled, inspected by auditors, and compared with the CVR. We prove that such an audit can achieve risk commensurate with standard comparison audits while generating a fraction of the CVR. We present three main contributions: (1) a formal adversarial model for RLAs; (2) definition and analysis of an adaptive audit procedure with rigorous risk limits and an associated correctness analysis accounting for the incidental errors arising in typical audits; and (3) an analysis of efficiency.  more » « less
Award ID(s):
2141033 2232813
PAR ID:
10420389
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Security and Privacy
Page Range / eLocation ID:
3314-3331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As paper ballots and post-election audits gain increased adoption in the United States, election technology vendors are offering products that allow jurisdictions to review ballot images—digital scans produced by optical-scan voting machines—in their post-election audit procedures. Jurisdictions including the state of Maryland rely on such image audits as an alternative to inspecting the physical paper ballots. We show that image audits can be reliably defeated by an attacker who can run malicious code on the voting machines or election management system. Using computer vision techniques, we develop an algorithm that automatically and seamlessly manipulates ballot images, moving voters’ marks so that they appear to be votes for the attacker’s preferred candidate. Our implementation is compatible with many widely used ballot styles, and we show that it is effective using a large corpus of ballot images from a real election. We also show that the attack can be delivered in the form of a malicious Windows scanner driver, which we test with a scanner that has been certified for use in vote tabulation by the U.S. Election Assistance Commission. These results demonstrate that post-election audits must inspect physical ballots, not merely ballot images, if they are to strongly defend against computer-based attacks on widely used voting systems. 
    more » « less
  2. U.S. elections rely heavily on computers such as voter registration databases, electronic pollbooks, voting machines, scanners, tabulators, and results reporting websites. These introduce digital threats to election outcomes. Risk-limiting audits (RLAs) mitigate threats to some of these systems by manually inspecting random samples of ballot cards. RLAs have a large chance of correcting wrong outcomes (by conducting a full manual tabulation of a trustworthy record of the votes), but can save labor when reported outcomes are correct. This efficiency is eroded when sampling cannot be targeted to ballot cards that contain the contest(s) under audit. If the sample is drawn from all cast cards, then RLA sample sizes scale like the reciprocal of the fraction of ballot cards that contain the contest(s) under audit. That fraction shrinks as the number of cards per ballot grows (i.e., when elections contain more contests) and as the fraction of ballots that contain the contest decreases (i.e., when a smaller percentage of voters are eligible to vote in the contest). States that conduct RLAs of contests on multi-card ballots or RLAs of small contests can dramatically reduce sample sizes by using information about which ballot cards contain which contests—by keeping track of card-style data (CSD). For instance, CSD reduce the expected number of draws needed to audit a single countywide contest on a 4-card ballot by 75%. Similarly, CSD reduce the expected number of draws by 95% or more for an audit of two contests with the same margin on a 4-card ballot if one contest is on every ballot and the other is on 10% of ballots. In realistic examples, the savings can be several orders of magnitude. 
    more » « less
  3. Currently deployed election systems that scan and process hand-marked ballots are not sophisticated enough to handle marks insufficiently filled in (e.g., partially filled-in), improper marks (e.g., using check marks or crosses instead of filling in bubbles), or marks outside of bubbles, other than setting a threshold to detect whether the pixels inside bubbles are dark and dense enough to be counted as a vote. The current works along this line are still largely limited by their degree of automation and require substantial manpower for annotation and adjudication. In this study, we propose a highly automated deep learning (DL) mark segmentation model-based ballot tabulation assistant able to accurately identify legitimate ballot marks. For comparison purposes, a highly customized traditional computer vision (T-CV) mark segmentation-based method has also been developed to compare with the DL-based tabulator, with a detailed discussion included. Our experiments conducted on two real election datasets achieved the highest accuracy of 99.984% on ballot tabulation. In order to further enhance our DL model’s capability of detecting the marks that are underrepresented in training datasets, e.g., insufficiently or improperly filled marks, we propose a Siamese network architecture that enables our DL model to exploit the contrasting features between a handmarked ballot image and its corresponding blank template image to detect marks. Without the need for extra data collection, by incorporating this novel network architecture, our DL modelbased tabulation method not only achieved a higher accuracy score but also substantially reduced the overall false negative rate. 
    more » « less
  4. We solve a long-standing challenge to the integrity of votes cast without the supervision of a voting booth: ``improper influence,'' which we define as any combination of vote buying and voter coercion. In comparison with previous proposals, our system is the first in the literature to protect against a strong adversary who learns all of the voter's keys---we call this property ``extreme coercion resistance.'' Our approach allows each voter, or their trusted agents (which we call ``hedgehogs''), to ``nullify'' (effectively cancel) their vote in a way that is unstoppable and irrevocable, and such that the nullification action is forever unattributable to that voter or their hedgehog(s). We demonstrate the security of VoteXX in the {universal composability} model. Additionally we provide concrete implementations of sub-protocols---including inalienable authentication, decentralized bulletin boards, and anonymous communication channels---that are usually left as abstract assumptions in the literature. As in many other coercion-resistant systems, voters are authorized to vote with public-private keys. Each voter registers their public keys with the Election Authority (EA) in a way that convinces the EA that the voter has complete knowledge of their private keys. Voters concerned about losing their private keys can themselves, or by delegating to one or more hedgehog(s), monitor the bulletin board for malicious ballots cast with their keys, and can act to nullify these ballots in a privacy-preserving manner with zero-knowledge proofs. In comparison with previous proposals, our system makes fewer assumptions and protects against a stronger adversary. For example, votexx makes none of the following assumptions made by previous systems: the voter must complete registration before being coerced; the election will not close before the voter can cast a ballot after coercion; the voter needs to generate a fake password to evade coercion; and the voter knows an honest Election Authority official. 
    more » « less
  5. We solve a long-standing challenge to the integrity of votes cast without the supervision of a voting booth: ``{\it improper influence},'' which typically refers to any combination of vote buying and voter coercion. Our approach allows each voter, or their trusted agents (which we call ``{\it hedgehogs}''), to {\it ``nullify''} (effectively cancel) their vote in a way that is unstoppable, irrevocable, and forever unattributable to the voter. In particular, our approach enhances security of online, remote, public-sector elections, for which there is a growing need and the threat of improper influence is most acute. We introduce the new approach, give detailed cryptographic protocols, show how it can be applied to several voting settings, and describe our implementation. The protocols compose a full voting system, which we call {\it {\votexx}}, including registration, voting, nullification, and tallying---using an anonymous communication system for registration, vote casting, and other communication in the system. We demonstrate how the technique can be applied to known systems, including where ballots can be mailed to voters and voters use codes on the ballot to cast their votes online. In comparison with previous proposals, our system makes fewer assumptions and protects against a strong adversary who learns all of the voter's keys. In {\votexx}, each voter has two public-private key pairs. Without revealing their private keys, each voter registers their public keys with the election authority. Each voter may share their keys with one or more hedgehogs. During nullification, the voter, or one or more of their hedgehogs, can interact through the anonymous communication system to nullify a vote by proving knowledge of one of the voter's private keys via a zero-knowledge proof without revealing the private key. We describe a fully decentralizable implementation of {\votexx}, including its public bulletin board, which could be implemented on a blockchain. 
    more » « less