skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Triangular modular curves of small genus
Abstract Triangular modular curves are a generalization of modular curves that arise from quotients of the upper half-plane by congruence subgroups of hyperbolic triangle groups. These curves also arise naturally as a source of Belyi maps with monodromy $$\text {PGL}_2(\mathbb {F}_q)$$ PGL 2 ( F q ) or $$\text {PSL}_2(\mathbb {F}_q)$$ PSL 2 ( F q ) . We present a computational approach to enumerate Borel-type triangular modular curves of low genus, and we carry out this enumeration for prime level and small genus.  more » « less
Award ID(s):
1946311
PAR ID:
10420425
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Research in Number Theory
Volume:
9
Issue:
1
ISSN:
2522-0160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that every finite abelian group occurs as the group of rational points of an ordinary abelian variety over F 2 \mathbb {F}_2 , F 3 \mathbb {F}_3 and F 5 \mathbb {F}_5 . We produce partial results for abelian varieties over a general finite field  F q \mathbb {F}_q . In particular, we show that certain abelian groups cannot occur as groups of rational points of abelian varieties over F q \mathbb {F}_q when q q is large. Finally, we show that every finite cyclic group arises as the group of rational points of infinitely many simple abelian varieties over  F 2 \mathbb {F}_2
    more » « less
  2. Abstract We compute moments of L-functions associated to the polynomial family of Artin–Schreier covers over $$\mathbb{F}_q$$, where q is a power of a prime p > 2, when the size of the finite field is fixed and the genus of the family goes to infinity. More specifically, we compute the $$k{\text{th}}$$ moment for a large range of values of k, depending on the sizes of p and q. We also compute the second moment in absolute value of the polynomial family, obtaining an exact formula with a lower order term, and confirming the unitary symmetry type of the family. 
    more » « less
  3. Abstract Fix a positive integernand a finite field$${\mathbb {F}}_q$$ F q . We study the joint distribution of the rank$${{\,\mathrm{rk}\,}}(E)$$ rk ( E ) , then-Selmer group$$\text {Sel}_n(E)$$ Sel n ( E ) , and then-torsion in the Tate–Shafarevich group Equation missing<#comment/>asEvaries over elliptic curves of fixed height$$d \ge 2$$ d ≄ 2 over$${\mathbb {F}}_q(t)$$ F q ( t ) . We compute this joint distribution in the largeqlimit. We also show that the ā€œlargeq, then large heightā€ limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains. 
    more » « less
  4. Abstract Given a prime powerqand$$n \gg 1$$ n ≫ 1 , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ [ ( q - 1 ) 2 n , ( q + 1 ) 2 n ] is$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ F q . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ F 2 to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some abelian varietyAover$${\mathbb {F}}_q$$ F q . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ q → āˆž ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ q ≤ 5 , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ ≄ q 3 q log q is realizable. 
    more » « less
  5. Let $$p$$ be an odd  prime, $q=p^e$, $$e \geq 1$$, and $$\mathbb{F} = \mathbb{F}_q$$ denote the finite field of $$q$$ elements.  Let $$f: \mathbb{F}^2\to \mathbb{F}$$ and  $$g: \mathbb{F}^3\to \mathbb{F}$$  be functions, and  let $$P$$ and $$L$$ be two copies of the 3-dimensional vector space $$\mathbb{F}^3$$. Consider a bipartite graph $$\Gamma_\mathbb{F} (f, g)$$ with vertex partitions $$P$$ and $$L$$ and with edges defined as follows: for every $$(p)=(p_1,p_2,p_3)\in P$$ and every $$[l]= [l_1,l_2,l_3]\in L$$, $$\{(p), [l]\} = (p)[l]$$ is an edge in $$\Gamma_\mathbb{F} (f, g)$$ if $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = g(p_1,p_2,l_1).$$The following question  appeared in Nassau: Given $$\Gamma_\mathbb{F} (f, g)$$,  is it always possible to find a function $$h:\mathbb{F}^2\to \mathbb{F}$$ such that the graph $$\Gamma_\mathbb{F} (f, h)$$  with the same vertex set as $$\Gamma_\mathbb{F} (f, g)$$ and with edges $(p)[l]$  defined in a similar way  by the system $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = h(p_1,l_1),$$ is isomorphic to $$\Gamma_\mathbb{F} (f, g)$$ for infinitely many $$q$$?  In this paper we show that the  answer to the question is negative and the graphs $$\Gamma_{\mathbb{F}_p}(p_1\ell_1, p_1\ell_1p_2(p_1 + p_2 + p_1p_2))$$ provide such an example for $$p \equiv 1 \pmod{3}$$. Our argument is based on proving that the automorphism group of these graphs has order $$p$$, which is the smallest possible order of the automorphism group of graphs of the form $$\Gamma_{\mathbb{F}}(f, g)$$. 
    more » « less