skip to main content


Title: Color tunable aerogels/sponge-like structures developed from fine fiber membranes
The development of macroscopic aerogels from 1D systems, such as nanofibers, has resulted in a novel pathway to obtain porous and lightweight architectures. In this work, bright green, red, and tunable color emitting aerogels were obtained with luminescent nanofibers as the precursor system. A simple, low cost, and environmentally friendly process is followed where luminescent fillers are encapsulated within fibers which were subsequently freeze-dried to form 3D aerogels and sponge-like structures. Moreover, the aerogels/sponge-like structures show higher photoluminescence intensity than the fiber mats due to an increase of porosity which provides higher and direct interaction with the fillers and therefore an efficient light absorption resulting in higher luminescence. Manganese doped zinc germanate (Mn: Zn 2 GeO 4 ) nanorods and chromium doped zinc gallate (Cr: ZnGa 2 O 4 ) nanoparticles were used as the source of green and red emissions respectively. By precisely adjusting the stoichiometric ratios of nanorods and nanoparticles within the nanofibers, a broad spectrum output is obtained from the final aerogels. We foresee that these types of photoluminescent aerogels have promising potential applications in a variety of fields such as display devices, solid-state lighting, sensors, etc.  more » « less
Award ID(s):
2122178
PAR ID:
10420474
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Materials Advances
Volume:
3
Issue:
6
ISSN:
2633-5409
Page Range / eLocation ID:
2716 to 2725
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fabrication of highly stable, reversible, and efficient portable sensors for the detection of explosives for safety and security is challenging due to the robustness of the currently available detection tools, limiting their mass deployment to the explosion prone areas. This paper reports a new direction towards the sensing of nitro- and peroxide-based explosives using highly stable rare-earth-doped BaWO 4 nanofibers with remarkable sensitivity and reversibility. BaWO 4 nanofibers doped with Tb 3+ and Eu 3+ ions are fabricated through a sol–gel electrospinning process, and their emission characteristics and application as a fluorescent probe for the sensing of 2-nitrotoluene and H 2 O 2 , explosive taggants representing a broad class of explosives, are studied in detail. Scheelite structured BaWO 4 nanofibers exhibit excellent luminescence characteristics, and the rare-earth ion doping in the polycrystalline BaWO 4 nanofibers is tailored to achieve blue, green, red, and white light emissions. These nanofibers are extremely sensitive to 2-nitrotoluene and H 2 O 2 with rapid response time, and sensitivity is observed within the range of 1–400 ppb and 1–10 ppm, towards 2-nitrotoluene and H 2 O 2 , respectively. The fluorescence quenching of BaWO 4 nanofibers in the presence of 2-nitrotoluene and H 2 O 2 is exponential with the quenching constants up to 1.73 × 10 6 and 2.73 × 10 4 L mol −1 , respectively, which are significantly higher than those of most of the fluorescent probes based on metal–organic frameworks and conjugated organic materials. After exposing to 2-nitrotoluene, the luminescence of the nanofibers is retained completely upon heating at 120 °C for 10 min and the sensory response is retained as fresh nanofibers, and currently available fluorescent explosive sensors could not achieve such a recovery. The high sensitivity and selectivity of scalable rare-earth-doped BaWO 4 nanofibers provide a new platform for the simultaneous detection of two classes of explosives. 
    more » « less
  2. A series of multi-doped yttrium pyrosilicate (YPS) nanoparticles were synthesized using a high temperature multi-composite reactor, and used to explore the radioluminescent properties that have potential for biological applications. The luminescent activators explored in this work were cerium, terbium, and europium. A series of mono-doped YPS nanoparticles were synthesized that have optical and X-ray luminescent properties that span the entire visible spectrum. Energy transfer experiments were investiagted to increase the photo- and X-ray luminescence of terbium and europium. Cerium was used as a sensitizer for terbium where X-ray luminescence was enhanced. Similar results were also obtained using cerium as a sensitizer and terbium as an energy bridge for europium. By leveraging different energy transfer mechanisms X-ray luminescence can be enhanced for YPS nanoparticles. 
    more » « less
  3. Abstract

    Designing 3D mechanically robust and high‐surface‐area substrates for uniform and high‐density deposition of metal–organic frameworks (MOFs) provide a promising strategy to enhance surface accessibility and application of these highly functional materials. Nanofibrous aerogel (NFA) with its highly porous self‐supported structure composed of interconnected nanofibrous network offers an ideal platform in this regard. Herein, a facile one‐pot strategy is introduced, which utilizes direct deposition of MOF on the nanofibrous surface of the NFAs. NFAs are synthesized using electrospun polyacrylonitrile/polyvinylpyrrolidone (PAN/PVP) polymer nanofibers containing zinc acetate (Zn(Ac)2), which are subjected to freeze drying and thermal treatment. The latter converts Zn(Ac)2to zinc oxide (ZnO), providing the sites for MOF growth while also adding mechanical integrity to the NFAs through cyclization of the PAN. Exposure of the NFA to the vapor‐phase of organic ligand, 2‐methylimidazole (2‐MeIm) enables in situ growth of zeolitic imidazolate framework‐8 (ZIF‐8) MOF on the NFA. ZIF‐8 loading on the NFAs is further improved by more than tenfold by synthesizing ZnO nanorods/protrusions on the nanofibers, which enables more sites for MOF growth. These findings underscore a significant advancement in designing MOF‐based hybrid aerogels, offering a streamlined approach for their use in diverse applications, from catalysis to sensing and water purification.

     
    more » « less
  4. Dye-doped nanoparticles have been investigated as bright, luminescent labels for super-resolution microscopy via localization methods. One key factor in super-resolution is the size of the luminescent label, which in some cases results in a frame shift between the label target and the label itself. Ag@SiO 2 core–shell nanoparticles, doped with organic fluorophores, have shown promise as super-resolution labels. One key aspect of these nanoparticles is that they blink under certain conditions, allowing super-resolution localization with a single excitation source in aqueous solution. In this work, we investigated the effects of both the Ag core and the silica (SiO 2 ) shell on the self-blinking properties of these nanoparticles. Both core size and shell thickness were manipulated by altering the reaction time to determine core and shell effects on photoblinking. Size and shell thickness were investigated individually under both dry and hydrated conditions and were then doped with a 1 mM solution of Rhodamine 110 for analysis. We observed that the cores themselves are weakly luminescent and are responsible for the blinking observed in the fully-synthesized metal-enhanced fluorescence nanoparticles. There was no statistically significant difference in photoblinking behavior—both intensity and duty cycle—with decreasing core size. This observation was used to synthesize smaller nanoparticles ranging from approximately 93 nm to 110 nm as measured using dynamic light scattering. The blinking particles were localized via super-resolution microscopy and show single particle self-blinking behavior. As the core size did not impact blinking performance or intensity, the nanoparticles can instead be tuned for optimal size without sacrificing luminescence properties. 
    more » « less
  5. We report on plasmon-enhanced random lasing in bio-compatible light emitting Hydroxypropyl Cellulose (HPC) nanofiber networks doped with gold nanoparticles. HPC nanofibers with a diameter of 260 ± 30 nm were synthesized by a one step, cost-effective and facile electrospinning technique from a solution-containing Rhodamine 6G and Au nanoparticles. Nanoparticles of controlled diameters from 10 nm to 80 nm were dispersed inside the nanofibers and optically characterized using photoluminescence, dark-field spectroscopy, and coherent backscattering measurements. Plasmon-enhanced random lasing was demonstrated with a lower threshold than that in dye-doped identical HPC networks without Au nanoparticles. These findings provide an effective approach for plasmon-enhanced random lasers based on a bio-compatible host matrix that is particularly attractive for biophotonic applications such as fluorescence sensing, optical tagging, and detection.

     
    more » « less