skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of SnO2 / TiO2 micro belt fibers from polymer composite precursors and their applications in Li‐ion batteries*
Award ID(s):
2122178
PAR ID:
10420476
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Polymer Engineering & Science
Volume:
62
Issue:
2
ISSN:
0032-3888
Page Range / eLocation ID:
360 to 372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Over the last two decades, polymers with superior H2/CO2separation properties at 100–300 °C have gathered significant interest for H2purification and CO2capture. This timely review presents various strategies adopted to molecularly engineer polymers for this application. We first elucidate the Robeson's upper bound at elevated temperatures for H2/CO2separation and the advantages of high‐temperature operation (such as improved solubility selectivity and absence of CO2plasticization), compared with conventional membrane gas separations at ~35 °C. Second, we describe commercially relevant membranes for the separation and highlight materials with free volumes tuned to discriminate H2and CO2, including functional polymers (such as polybenzimidazole) and engineered polymers by cross‐linking, blending, thermal treatment, thermal rearrangement, and carbonization. Third, we succinctly discuss mixed matrix materials containing size‐sieving or H2‐sorptive nanofillers with attractive H2/CO2separation properties. 
    more » « less
  2. Abstract Polymeric donors of gasotransmitters, gaseous signaling molecules such as hydrogen sulfide, nitric oxide, and carbon monoxide, hold potential for localized and extended delivery of these reactive gases. Examples of gasotransmitter donors based on polysaccharides are limited despite the availability and generally low toxicity of this broad class of polymers. In this work, we sought to create a polysaccharide H2S donor by covalently attachingN‐thiocarboxyanhydrides (NTAs) to amylopectin, the major component of starch. To accomplish this, we added an allyl group to an NTA, which can spontaneously hydrolyze to release carbonyl sulfide and ultimately H2S via the ubiquitous enzyme carbonic anhydrase, and then coupled it to thiol‐functionalized amylopectin of three different molecular weights (MWs) through thiol‐ene “click” photochemistry. We also varied the degree of substitution (DS) of the NTA along the amylopectin backbone. H2S release studies on the six samples, termed amyl‐NTAs, with variable MWs (three) and DS values (two), revealed that lower MW and higher DS led to faster release. Finally, dynamic light scattering experiments suggested that aggregation increased with MW, which may also have affected H2S release rates. Collectively, these studies present a new synthetic method to produce polysaccharide H2S donors for applications in the biomedical field. 
    more » « less
  3. Abstract The catalytic hydrothermal liquefaction of biomass under a hydrogen atmosphere is a promising technology to produce stable biocrude oil as a sustainable alternative to petroleum crude. A series of iron‐based non‐noble mix metal‐oxide‐on‐silica catalysts were evaluated to mimic the natural transformation that may have led to the conversion of terrestrial biomass to fossilized fuels. Switchgrass powder was liquefied to a stable bio‐oil with a 71.2% yield by using FeOx/SiO2catalyst in ethanol under a 5.5 MPa hydrogen atmosphere at 210 °C. The use of Fe‐MOx/SiO2(M = V, Mn, Co, Ni, Cu and Mo) type bimetallic oxide catalysts instead of FeOx/SiO2can produce improvements in liquefaction yields by using Mn, Co, Ni, and Cu as the second metal. The highest liquefaction yield of 78.8% was observed with the Fe‐CuOx/SiO2catalyst. Liquefaction oils were formed that were composed of complex mixtures of C6‐C12 alcohols, esters, aldehydes, and phenols. The lignin products:holocellulose products ratio changed in the range 0.35 to 0.15 and the composition of oils changed significantly with the use of mixed metal oxides in place of single metal FeOx/SiO2The most effective catalyst, Fe‐CuOx/SiO2could be reused in five cycles with a small loss in liquefaction yield from 78.8% to 70.0% after four reuse cycles and after regeneration of the catalyst at 500 °C for 3 h in air. 
    more » « less
  4. Spontaneous Ge6O8cluster formation under ambient conditions using dispersion enhanced aryloxo ligands. 
    more » « less
  5. Abstract Buffers of known quality for the calibration of seawater pHTmeasurements are not widely or commercially available. Although there exist published compositions for the 0.04 mol kg‐H2O−1equimolar buffer 2‐amino‐2‐hydroxymethyl‐1,3‐propanediol (TRIS)‐TRIS · H+in synthetic seawater, there are no explicit procedures that describe preparing this buffer to achieve a particular pHTwith a known uncertainty. Such a procedure is described here which makes use of easily acquired laboratory equipment and techniques to produce a buffer with a pHTwithin 0.006 of the published pHTvalue originally assigned by DelValls and Dickson (1998), 8.094 at 25°C. Such a buffer will be suitable for the calibration of pH measurements expected to fulfil the “weather” uncertainty goal of the Global Ocean Acidification Observation Network of 0.02 in pHT, an uncertainty goal appropriate to “identify relative spatial patterns and short‐term variation.” 
    more » « less