skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectroscopic signatures of states in the continuum characterized by a joint experimental and theoretical study of pyrrole
We report a combined experimental and theoretical investigation of electron–molecule interactions using pyrrole as a model system. Experimental two-dimensional electron energy loss spectra (EELS) encode information about the vibrational states of the molecule as well as the position and structure of electronic resonances. The calculations using complex-valued extensions of equation-of-motion coupled-cluster theory (based on non-Hermitian quantum mechanics) facilitate the assignment of all major EELS features. We confirm the two previously described π resonances at about 2.5 and 3.5 eV (the calculations place these two states at 2.92 and 3.53 eV vertically and 2.63 and 3.27 eV adiabatically). The calculations also predict a low-lying resonance at 0.46 eV, which has a mixed character—of a dipole-bound state and σ* type. This resonance becomes stabilized at one quanta of the NH excitation, giving rise to the sharp feature at 0.9 eV in the corresponding EELS. Calculations of Franck–Condon factors explain the observed variations in the vibrational excitation patterns. The ability of theory to describe EELS provides a concrete illustration of the utility of non-Hermitian quantum chemistry, which extends such important concepts as potential energy surfaces and molecular orbitals to states embedded in the continuum.  more » « less
Award ID(s):
2154482
PAR ID:
10420496
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
20
ISSN:
0021-9606
Page Range / eLocation ID:
204305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We probe the low-energy electron collisions with methyl formate HCOOCH 3 , focusing on its resonant states. Experimentally, we (i) use two-dimensional electron energy loss spectroscopy to gain information about the vibrational excitation and (ii) report the absolute dissociative electron attachment cross sections. The electron scattering spectra reveal both the threshold effects due to the long-range electron–molecule interaction and a pronounced π* resonance centered around 2.1 eV. This resonance gives rise to dissociative electron attachment into three different anionic channels, the strongest one being the production of the formate anion. Theoretically, we characterize this resonant state using the complex absorbing potential approach combined with multistate multireference perturbation theory, which predicts its position and width in excellent agreement with the experiment. 
    more » « less
  2. null (Ed.)
    In a combined experimental and theoretical study we probe the transient anion states (resonances) in cyanogen. Experimentally, we utilize electron energy loss spectroscopy which reveals the resonance positions by monitoring the excitation functions for vibrationally inelastic electron scattering. Four resonances are visible in the spectra, centered around 0.36 eV, 4.1, 5.3 and 7.3 eV. Theoretically, we explore the resonant states by using the regularized analytical continuation method. A very good agreement with the experiment is obtained for low-lying resonances, however, the computational method becomes unstable for higher-lying states. The lowest shape resonance ( 2 Π u ) is independently explored by the complex adsorbing potential method. In the experiment, this resonance is manifested by a pronounced boomerang structure. We show that the naive picture of viewing NCCN as a pseudodihalogen and focusing only on the CC stretch is invalid. 
    more » « less
  3. Energy flow in molecules, like the dynamics of other many-dimensional finite systems, involves quantum transport across a dense network of near-resonant states. For molecules in their electronic ground state, the network is ordinarily provided by anharmonic vibrational Fermi resonances. Surface crossing between different electronic states provides another route to chaotic motion and energy redistribution. We show that nonadiabatic coupling between electronic energy surfaces facilitates vibrational energy flow and, conversely, anharmonic vibrational couplings facilitate nonadiabatic electronic state mixing. A generalization of the Logan–Wolynes theory of quantum energy flow in many-dimensional Fermi resonance systems to the two-surface case gives a phase diagram describing the boundary between localized quantum dynamics and global energy flow. We explore these predictions and test them using a model inspired by the problem of electronic excitation energy transfer in the photosynthetic reaction center. Using an explicit numerical solution of the time-dependent Schrödinger equation for this ten-dimensional model, we find quite good agreement with the expectations from the approximate analytical theory. 
    more » « less
  4. Study of the formation mechanism for atmospheric ozone helps to understand development of planetary atmosphere. We focus on anomalous mass-independent isotope effect. To understand the nature of isotope effect we consider all stages of ozone formation with commonly used mechanism at the low pressure regime - energy transfer (Lindemann) mechanism which involves metastable intermediate state O3*. O3* is described by scattering resonance in quantum mechanics. Particularly, scattering resonances can be calculated using of stabilization method of Clary. Stabilization approach implies that eigenvalues change as a functions of stabilization parameter (extension of the grid boundary). Based on quantum mechanical calculations of scattering resonances, kinetic rate coefficients were computed. Found resonance states were used for calculation of kinetics rate coefficients such as equilibrium and recombination coefficients for three pressure regimes (0.3, 30 and 3000 atm). Influence of pressure was estimated as well as contributions of other kinetic parameters - stabilization constant weight of each resonance, rotational, vibrational and electronic partition functions for molecule 686 O3. 
    more » « less
  5. null (Ed.)
    Quantum computing is a new and rapidly evolving paradigm for solving chemistry problems. In previous work, we developed the Quantum Annealer Eigensolver (QAE) and applied it to the calculation of the vibrational spectrum of a molecule on the D-Wave quantum annealer. However, the original QAE methodology was applicable to real symmetric matrices only. For many physics and chemistry problems, the diagonalization of complex matrices is required. For example, the calculation of quantum scattering resonances can be formulated as a complex eigenvalue problem where the real part of the eigenvalue is the resonance energy and the imaginary part is proportional to the resonance width. In the present work, we generalize the QAE to treat complex matrices: first complex Hermitian matrices and then complex symmetric matrices. These generalizations are then used to compute a quantum scattering resonance state in a 1D model potential for O + O collisions. These calculations are performed using both a software (classical) annealer and hardware annealer (the D-Wave 2000Q). The results of the complex QAE are also benchmarked against a standard linear algebra library (LAPACK). This work presents the first numerical solution of a complex eigenvalue problem of any kind on a quantum annealer, and it is the first treatment of a quantum scattering resonance on any quantum device. 
    more » « less