skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CFD Modeling of Droplets Heated by an X-ray Free Electron Laser
Material in HED regimes are at very high pressures and temperatures but can often still be modeled in the plasma-fluid approximation. Historically HED regimes were created using large laser/ion- beam drivers heating solid targets. Exciting data was obtained from these single shot experiments. In recent years there has been a shift to obtain HED related data from a large number of shots by using high-repetition-rate drivers. For high-repetition-rate experiments a series of droplet targets are often used to have a fresh target/droplet for each shot. However, one must make sure that target debris from the previous shot does not degrade the target for subsequent shots. This is a challenging CFD problem as one needs to model the initial dynamics of the heated droplet and the subsequent interaction with the following droplets. We use the CFD modeling code PISALE to study this complex problem. We discuss results for liquid hydrogen droplets heated by an x-ray free electron laser (XFEL). We first show 2D results for single heated droplet then 3D results for a heated droplet interacting with two unheated droplets.  more » « less
Award ID(s):
2005259
PAR ID:
10420558
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the International Conference on Computational Fluid Dynamics
ISSN:
2330-6580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultra-intense laser and plasma interactions with their ability to accelerate particles reaching relativistic speed are exciting from a fundamental high-field physics perspective. Such relativistic laser-plasma interaction (RLPI) offers a plethora of critical applications for energy, space, and defense enterprise. At AFIT’s Extreme Light Laboratory (ELL), we have demonstrated such RLPI employing a table-top ∼10mJ, 40 fs laser pulses at a kHz repetition rate that produce different types of secondary radiations via target normal sheath acceleration (TNSA). With our recent demonstration of laser-driven fusion, the secondary radiations generated are neutrons, x-ray emission, and MeV energy electrons and protons—all at a kHz rate. To achieve the high repetition rate, we developed the enabling kHz-repetition-rate-compatible liquid targets in the form of microjets, droplets, and submicron-thick sheets. These targets, combined with high repetition rate diagnostics, enable a unique, real-time feedback loop between the experimental inputs (laser and target parameters) and generated sources (x-rays, electrons, ions, etc.) to develop machine learning (ML)-based control of mixed radiation. The goal of this paper is to provide an overview of the capabilities of ELL, describe the diagnostics and characteristics of the secondary radiation, data analysis, and quasi-real-time ML functionality of this platform that have been developed over the last decade and a half. 
    more » « less
  2. The European XFEL delivers up to 27000 intense (>1012photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses. 
    more » « less
  3. A comprehensive understanding of heat transfer mechanisms and hydrodynamics during droplet impingement on a heated surface and subsequent evaporation is crucial for improving heat transfer models, optimizing surface engineering, and maximizing overall effectiveness. This work showcases findings related to heat transfer mechanisms and simultaneous tracking of the moving contact line (MCL) for subcooled impinging droplets across a range of surface temperatures, utilizing a custom MEMS device, at multiple impact velocities. Experimental results show that heat flux caused by droplet impingement has a weaker dependence on surface temperature than receding MCL heat transfer due to evaporation, which is significantly surface temperature dependent. The measurements also demonstrate that when a droplet impacts a heated surface and evaporates, the process can be divided into two segments based on the effective heat transfer rate: an initial conduction-dominated segment followed by another segment dominated by surface evaporation. For subcooled impinging droplets, the effect of oscillatory motion is found to be negligible, unlike in a superheated regime; hence, heat conduction into the droplet entirely governs the first segment. Results also show that heat flux at the solid-liquid interface of an impinging droplet increases with the rise of either impact velocity or surface temperature. In the subcooled regime, droplets impacting a heated surface have approximately 1.6 times higher vertical heat flux values than gently deposited droplets. Furthermore, this study quantifies the contributions of buoyancy and thermocapillary convection within the droplet to the overall heat transfer. 
    more » « less
  4. Ultra-intense laser–matter interactions are often difficult to predict from first principles because of the complexity of plasma processes and the many degrees of freedom relating to the laser and target parameters. An important approach to controlling and optimizing ultra-intense laser interactions involves gathering large datasets and using these data to train statistical and machine learning models. In this paper, we describe experimental efforts to accelerate electrons and protons to ∼MeV energies with this goal in mind. These experiments involve a 1 kHz repetition rate ultra-intense laser system with ∼10 mJ per shot, a peak intensity near 5 × 1018 W/cm2, and a “liquid leaf” target. Improvements to the data acquisition capabilities of this laser system greatly aided this investigation. Generally, we find that the trained models were very effective in controlling the numbers of MeV electrons ejected. The models were less successful at shifting the energy range of ejected electrons. Simultaneous control of the numbers of ∼MeV electrons and the energy range will be the subject of future experimentation using this platform. 
    more » « less
  5. Abstract High-intensity, short-pulse lasers are crucial for generating energetic electrons that produce high-energy-density (HED) states in matter, offering potential applications in igniting dense fusion fuels for fast ignition laser fusion. High-density targets heated by these electrons exhibit spatially non-uniform and highly transient conditions, which have been challenging to characterize due to limitations in diagnostics that provide simultaneous high spatial and temporal resolution. Here, we employ an X-ray Free Electron Laser (XFEL) to achieve spatiotemporally resolved measurements at sub-micron and femtosecond scales on a solid-density copper foil heated by laser-driven fast electrons. Our X-ray transmission imaging reveals the formation of a solid-density hot plasma localized to the laser spot size, surrounded by Fermi degenerate, warm dense matter within a picosecond, and the energy relaxation occurring within the hot plasma over tens of picoseconds. These results validate 2D particle-in-cell simulations incorporating atomic processes and provide insights into the energy transfer mechanisms beyond current simulation capabilities. This work significantly advances our understanding of rapid fast electron heating and energy relaxation in solid-density matter, serving as a key stepping stone towards efficient high-density plasma heating and furthering the fields of HED science and inertial fusion energy research using intense, short-pulse lasers. 
    more » « less