Abstract A constant angle of twist was applied to silica glass rods in order to produce a torsional shear strain and a reduction in torque representative of the stress state in the glass was measured as a function of time when rods were heat‐treated in air at temperatures, 550‐700°C, far below the glass transition temperature. The monotonic decrease of torque with time was explained by surface stress relaxation, which can be described by a relaxation of stress at the surface of glass which is promoted by water. The obtained surface stress relaxation diffusion coefficients were consistent with those obtained earlier from silica glass fiber bending under a similar water vapor pressure. The observed relaxation in torsion supports the mechanism of surface stress relaxation over the swelling‐based mechanism for applications including glass fiber strengthening.
more »
« less
Effect of draw temperature and flame polishing on birefringence of silica glass fiber
Abstract Recently developed methods for high resolution birefringence measurement have been applied to distinguish between the surface and interior birefringence of silica glass fibers as a function of drawing temperature and initial surface condition for two types of silica glass with different water contents. Fibers were drawn in a water‐free argon environment using graphite heating elements. It was found that fibers drawn at lower temperatures resulted in greater, interior birefringence, in agreement with previous reports. Additionally, it was found that in the case of low‐water silica glass, flame polishing via oxygen–hydrogen mixture and drawn into fibers at lower temperature resulted in significant surface compressive stress upon drawing. This compressive stress may be the result of surface stress relaxation in silica glass that occurs in the presence of water during fiber drawing. In silica glass that contains greater internal hydroxyl impurity concentrations, the interior birefringence as well as the surface stress relaxation was significantly reduced under the same fiber drawing conditions. Characterization of such stress responses provides insight into the effects of common processing techniques as well as impresses the significance of preform processing for consistent fiber production.
more »
« less
- Award ID(s):
- 1713670
- PAR ID:
- 10420610
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- International Journal of Applied Glass Science
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2041-1286
- Format(s):
- Medium: X Size: p. 373-379
- Size(s):
- p. 373-379
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Silica glass samples were given various heat treatments under stress at low temperatures and subsequently their residual stress distributions in terms of retardance were observed using a polarized light microscope, confirming previously reported fast surface stress relaxation while providing more detailed characterization. Retardance profiles of silica glass fibers heat‐treated under a constant bending strain in the presence of atmospheric water vapor were measured and fit to a previously developed diffusion‐based relaxation model. The retardance of a cross‐section of a silica glass rod heat‐treated at 650°C in lab air under applied torsional shear strain was also measured to confirm the presence of residual surface shear stress which was predicted by the decrease of torque with time for the rod. Together, these results confirm the low‐temperature fast surface stress relaxation which occurs when water vapor is present for both bending and shear stresses.more » « less
-
Abstract Residual stress profiles in silica glass were measured after water diffusion treatment under 47.33 kPa (355 Torr) water vapor at 350°C and 650°C. Earlier, it was found that water solubility in silica glass exhibited peculiar time dependence: Solubility increased with time exceeding the normal water solubility expected from higher temperatures. Then, the water solubility decreased with time. It was hypothesized that the stress induced by water diffusion and its subsequent relaxation is responsible for the phenomenon. Residual surface stress generation in silica glass was found to correlate closely with surface hydroxyl concentration, systematically increasing until eventual surface stress relaxation results in stress decrease for treatments beyond 265 hours at 650°C. This observation validates previous theories of time dependent diffusivity in silica glass.more » « less
-
null (Ed.)This work presents a thorough identification and analysis of the dissolution and diffusion-based reaction processes that occur during the drawing of YBa2Cu3O7−x (YBCO) glass-clad fibers, using the molten-core approach, on a fiber draw tower in vacuum and in oxygen atmospheres. The results identify the dissolution of the fused silica cladding and the subsequent diffusion of silicon and oxygen into the molten YBCO core. This leads to a phase separation due to a miscibility gap which occurs in the YBCO–SiO2 system. Due to this phase separation, silica-rich precipitations form upon quenching. XRD analyses reveal that the core of the vacuum as-drawn YBCO fiber is amorphous. Heat-treatments of the vacuum as-drawn fibers in the 800–1200 °C range show that cuprite crystallizes out of the amorphous matrix by 800 °C, followed by cristobalite by 900 °C. Heat-treatments at 1100 °C and 1200 °C lead to the formation of barium copper and yttrium barium silicates. These results provide a fundamental understanding of phase relations in the YBCO–SiO2 glass-clad system as well as indispensable insights covering general glass-clad fibers drawn using the molten-core approach.more » « less
-
Stress relaxation in network materials with permanent crosslinks is due to the transport of fluid within the network (poroelasticity), the viscoelasticity of the matrix and the viscoelasticity of the network. While relaxation associated with the matrix was studied extensively, the contribution of the network remains unexplored. In this work we consider two and three-dimensional stochastic fiber networks with viscoelastic fibers and explore the dependence of stress relaxation on network structure. We observe that relaxation has two regimes – an initial exponential regime, followed by a stretched exponential regime – similar to the situation in other disordered materials. The stretch exponent is a function of density, fiber diameter and the network structure, and has a minimum at the transition between the affine and non-affine regimes of network behavior. The relaxation time constant of the first, exponential regime is similar to the relaxation time constant of individual fibers and is independent of network density and fiber diameter. The relaxation time constant of the second, stretched exponential regime is a weak function of network parameters. The stretched exponential emerges from the heterogeneity of relaxation dynamics on scales comparable with the mesh size, with higher heterogeneity leading to smaller stretch exponents. In composite networks of fibers whose relaxation time constant is selected from a distribution with set mean, the stretch exponent decreases with increasing the coefficient of variation of the fiber time constant distribution. As opposed to thermal glass formers and colloids, in these athermal systems the dynamic heterogeneity is introduced by the network structure and does not evolve during relaxation. While in thermal systems the control parameter is the temperature, in this athermal case the control parameter is a non-dimensional structural parameter which describes the degree of non-affinity of the network.more » « less
An official website of the United States government
