We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble
We introduce tools from discrete convexity theory and polyhedral geometry into the theory of West’s stack-sorting map
- Publication Date:
- NSF-PAR ID:
- 10420655
- Journal Name:
- Discrete & Computational Geometry
- ISSN:
- 0179-5376
- Publisher:
- Springer Science + Business Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract for$$\hbox {CLE}_{\kappa '}$$ in (4, 8) that is drawn on an independent$$\kappa '$$ -LQG surface for$$\gamma $$ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ for$$\hbox {CLE}_{\kappa }$$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ in terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ p and . This description was complete up to one missing parameter$$1-p$$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ p and . It shows in particular that$$\kappa '$$ and$$\hbox {CLE}_{\kappa '}$$ are related via a continuum analog of the Edwards-Sokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ percolation and the$$\hbox {FK}_q$$ q -state Potts model (which makes sense evenmore » -
Abstract Finite volume, weighted essentially non-oscillatory (WENO) schemes require the computation of a smoothness indicator. This can be expensive, especially in multiple space dimensions. We consider the use of the simple smoothness indicator
, where$$\sigma ^{\textrm{S}}= \frac{1}{N_{\textrm{S}}-1}\sum _{j} ({\bar{u}}_{j} - {\bar{u}}_{m})^2$$ is the number of mesh elements in the stencil,$$N_{\textrm{S}}$$ is the local function average over mesh element$${\bar{u}}_j$$ j , and indexm gives the target element. Reconstructions utilizing standard WENO weighting fail with this smoothness indicator. We develop a modification of WENO-Z weighting that gives a reliable and accurate reconstruction of adaptive order, which we denote as SWENOZ-AO. We prove that it attains the order of accuracy of the large stencil polynomial approximation when the solution is smooth, and drops to the order of the small stencil polynomial approximations when there is a jump discontinuity in the solution. Numerical examples in one and two space dimensions on general meshes verify the approximation properties of the reconstruction. They also show it to be about 10 times faster in two space dimensions than reconstructions using the classic smoothness indicator. The new reconstruction is applied to define finite volume schemes to approximate the solution of hyperbolic conservation laws. Numerical tests show results of the same quality as standard WENOmore » -
Abstract We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$ in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ W/$$11\times 10^3$$ at$$\hbox {m}^2$$ K for a bias voltage of$$T=2000$$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »$$V=23$$ -
Abstract The softmax policy gradient (PG) method, which performs gradient ascent under softmax policy parameterization, is arguably one of the de facto implementations of policy optimization in modern reinforcement learning. For
-discounted infinite-horizon tabular Markov decision processes (MDPs), remarkable progress has recently been achieved towards establishing global convergence of softmax PG methods in finding a near-optimal policy. However, prior results fall short of delineating clear dependencies of convergence rates on salient parameters such as the cardinality of the state space$$\gamma $$ and the effective horizon$${\mathcal {S}}$$ , both of which could be excessively large. In this paper, we deliver a pessimistic message regarding the iteration complexity of softmax PG methods, despite assuming access to exact gradient computation. Specifically, we demonstrate that the softmax PG method with stepsize$$\frac{1}{1-\gamma }$$ can take$$\eta $$ to converge, even in the presence of a benign policy initialization and an initial state distribution amenable to exploration (so that the distribution mismatch coefficient is not exceedingly large). This is accomplished by characterizing the algorithmic dynamics over a carefully-constructed MDP containing only three actions. Our exponential lower bound hints at the necessity of carefully adjusting update rules or enforcing proper regularization inmore »$$\begin{aligned} \frac{1}{\eta } |{\mathcal {S}}|^{2^{\Omega \big (\frac{1}{1-\gamma }\big )}} ~\text {iterations} \end{aligned}$$ -
Abstract It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.
arXiv:2010.09793 ) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators associated to a domain$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$ with a uniformly rectifiable boundary$$\Omega \subset {\mathbb {R}}^n$$ of dimension$$\Gamma $$ , the now usual distance to the boundary$$d < n-1$$ given by$$D = D_\beta $$ for$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$ , where$$X \in \Omega $$ and$$\beta >0$$ . In this paper we show that the Green function$$\gamma \in (-1,1)$$ G for , with pole at infinity, is well approximated by multiples of$$L_{\beta ,\gamma }$$ , in the sense that the function$$D^{1-\gamma }$$ satisfies a Carleson measure estimate on$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$ . We underline that the strong and the weak results are different in nature and, of course, at the levelmore »$$\Omega $$