Abstract While moderately elevated ambient temperatures do not trigger stress responses in plants, they do substantially stimulate the growth of specific organs through a process known as thermomorphogenesis. The basic helix–loop–helix transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) plays a central role in regulating thermomorphogenetic hypocotyl elongation in various plant species, including Arabidopsis (Arabidopsis thaliana). Although it is well known that PIF4 and its co-activator HEMERA (HMR) promote plant thermosensory growth by activating genes involved in the biosynthesis and signaling of the phytohormone auxin, the detailed molecular mechanism of such transcriptional activation is not clear. In this report, we investigated the role of the Mediator complex in the PIF4/HMR-mediated thermoresponsive gene expression. Through the characterization of various mutants of the Mediator complex, a tail subunit named MED14 was identified as an essential factor for thermomorphogenetic hypocotyl growth. MED14 was required for the thermal induction of PIF4 target genes but had a marginal effect on the levels of PIF4 and HMR. Further transcriptomic analyses confirmed that the expression of numerous PIF4/HMR-dependent, auxin-related genes required MED14 at warm temperatures. Moreover, PIF4 and HMR physically interacted with MED14 and both were indispensable for the association of MED14 with the promoters of these thermoresponsive genes. While PIF4 did not regulate MED14 levels, HMR was required for the transcript abundance of MED14. Taken together, these results unveil an important thermomorphogenetic mechanism, in which PIF4 and HMR recruit the Mediator complex to activate auxin-related growth-promoting genes when plants sense moderate increases in ambient temperature.
more »
« less
PHYTOCHROME‐INTERACTING FACTORS are involved in starch degradation adjustment via inhibition of the carbon metabolic regulator QUA‐QUINE STARCH in Arabidopsis
SUMMARY As sessile organisms, plants encounter dynamic and challenging environments daily, including abiotic/biotic stresses. The regulation of carbon and nitrogen allocations for the synthesis of plant proteins, carbohydrates, and lipids is fundamental for plant growth and adaption to its surroundings. Light, one of the essential environmental signals, exerts a substantial impact on plant metabolism and resource partitioning (i.e., starch). However, it is not fully understood how light signaling affects carbohydrate production and allocation in plant growth and development. An orphan gene unique toArabidopsis thaliana, namedQUA‐QUINE STARCH(QQS) is involved in the metabolic processes for partitioning of carbon and nitrogen among proteins and carbohydrates, thus influencing leaf, seed composition, and plant defense in Arabidopsis. In this study, we show that PHYTOCHROME‐INTERACTING bHLH TRANSCRIPTION FACTORS (PIFs), including PIF4, are required to suppressQQSduring the period at dawn, thus preventing overconsumption of starch reserves.QQSexpression is significantly de‐repressed inpif4andpifQ, while repressed by overexpression ofPIF4, suggesting that PIF4 and its close homologs (PIF1, PIF3, and PIF5) act as negative regulators ofQQSexpression. In addition, we show that the evening complex, including ELF3 is required for active expression ofQQS, thus playing a positive role in starch catabolism during night‐time. Furthermore,QQSis epigenetically suppressed by DNA methylation machinery, whereas histone H3 K4 methyltransferases (e.g., ATX1, ATX2, and ATXR7) and H3 acetyltransferases (e.g., HAC1 and HAC5) are involved in the expression ofQQS. This study demonstrates that PIF light signaling factors help plants utilize optimal amounts of starch during the night and prevent overconsumption of starch before its biosynthesis during the upcoming day.
more »
« less
- Award ID(s):
- 2014408
- PAR ID:
- 10420673
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 114
- Issue:
- 1
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- p. 110-123
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Beckles, Diane (Ed.)Abstract Heterotrimeric G-proteins, composed of Gα, Gβ, and Gγ subunits, are involved in the regulation of multiple signaling pathways in plants. OsDEP1 (a Gγ subunit) of rice and TaNBP1 (a Gβ subunit) of wheat are homologs of Arabidopsis AGG3 and AGB1, respectively, which are regulators of grain size and also involved in nitrogen responses. However, the function of Arabidopsis G-proteins in nitrogen utilization under different nitrogen conditions has not been fully investigated. In this study, to evaluate the role of Arabidopsis G-proteins in yield and nitrogen use efficiency (NUE), overexpression transgenic lines AtGPA1, AtAGB1 together with AtAGG1 (AGB1-AGG1), AtAGB1 together with AtAGG2 (AGB1-AGG2), and AtAGB1 together with AtAGG3 (AGB1-AGG3) were created in Brassica napus ‘K407’. Analysis of multiple transgenic B. napus lines showed that overexpression of GPA1, AGB1-AGG1, AGB1-AGG2, or AGB1-AGG3 led to increased biomass of seedling plants, including a well-developed root system, and increased nitrogen uptake under low and high nitrogen conditions. The activity of glutamine synthetase, a key nitrogen assimilating enzyme, and the expression levels of genes that are involved in nitrogen uptake and assimilation were significantly increased in overexpression plants under the low nitrogen condition. These properties enabled overexpression plants to increase the number of seeds per silique by 12–27% only under the low nitrogen condition, effectively improving yield per plant by 9–69% and NUE by 7–49%. These results reveal roles of G-proteins in regulating seed traits and NUE, and provide a strategy that can substantially improve crop yield and NUE.more » « less
-
Abstract Glucosinolates (GSLs) are defensive secondary metabolites produced by Brassicaceae species in response to abiotic and biotic stresses. The biosynthesis of GSL compounds and the expression of GSL-related genes are highly modulated by endogenous signals (i.e. circadian clocks) and environmental cues, such as temperature, light, and pathogens. However, the detailed mechanism by which light signaling influences GSL metabolism remains poorly understood. In this study, we found that a light-signaling factor, ELONGATED HYPOCOTYL 5 (HY5), was involved in the regulation of GSL content under light conditions in Arabidopsis (Arabidopsis thaliana). In hy5-215 mutants, the transcript levels of GSL pathway genes were substantially upregulated compared with those in wild-type (WT) plants. The content of GSL compounds was also substantially increased in hy5-215 mutants, whereas 35S::HY5-GFP/hy5-215 transgenic lines exhibited comparable levels of GSL-related transcripts and GSL content to those in WT plants. HY5 physically interacts with HISTONE DEACETYLASE9 and binds to the proximal promoter region of MYB29 and IMD1 to suppress aliphatic GSL biosynthetic processes. These results demonstrate that HY5 suppresses GSL accumulation during the daytime, thus properly modulating GSL content daily in Arabidopsis plants.more » « less
-
SUMMARY Protein homeostasis (proteostasis) is crucial for proper cellular function, including the production of peptides with biological functions through controlled proteolysis. Proteostasis has roles in maintenance of cellular functions and plant interactions with the environment under physiological conditions. Plant stress continues to reduce agricultural yields causing substantial economic losses; thus, it is critical to understand how plants perceive stress signals to elicit responses for survival. As previously shown inArabidopsis thaliana, thimet oligopeptidases (TOPs) TOP1 (also referred to as organellar oligopeptidase) and TOP2 (also referred to as cytosolic oligopeptidase) are essential components in plant response to pathogens, but further characterization of TOPs and their peptide substrates is required to understand their contributions to stress perception and defense signaling. Herein, label‐free peptidomics via liquid chromatography‐tandem mass spectrometry was used to differentially quantify 1111 peptides, originating from 369 proteins, between the Arabidopsis Col‐0 wild type andtop1top2knock‐out mutant. This revealed 350 peptides as significantly more abundant in the mutant, representing accumulation of these potential TOP substrates. Ten direct substrates were validated usingin vitroenzyme assays with recombinant TOPs and synthetic candidate peptides. These TOP substrates are derived from proteins involved in photosynthesis, glycolysis, protein folding, biogenesis, and antioxidant defense, implicating TOP involvement in processes aside from defense signaling. Sequence motif analysis revealed TOP cleavage preference for non‐polar residues in the positions surrounding the cleavage site. Identification of these substrates provides a framework for TOP signaling networks, through which the interplay between proteolytic pathways and defense signaling can be further characterized.more » « less
-
In maize, starch mutants have facilitated characterization of key genes involved in endosperm starch biosynthesis such as large subunit of AGPase Shrunken2 ( Sh2 ) and isoamylase type DBE Sugary1 ( Su1 ). While many starch biosynthesis enzymes have been characterized, the mechanisms of certain genes (including Sugary enhancer1 ) are yet undefined, and very little is understood about the regulation of starch biosynthesis. As a model, we utilize commercially important sweet corn mutations, sh2 and su1 , to genetically perturb starch production in the endosperm. To characterize the transcriptomic response to starch mutations and identify potential regulators of this pathway, differential expression and coexpression network analysis was performed on near-isogenic lines (NILs) (wildtype, sh2 , and su1 ) in six genetic backgrounds. Lines were grown in field conditions and kernels were sampled in consecutive developmental stages (blister stage at 14 days after pollination (DAP), milk stage at 21 DAP, and dent stage at 28 DAP). Kernels were dissected to separate embryo and pericarp from the endosperm tissue and 3′ RNA-seq libraries were prepared. Mutation of the Su1 gene led to minimal changes in the endosperm transcriptome. Responses to loss of sh2 function include increased expression of sugar (SWEET) transporters and of genes for ABA signaling. Key regulators of starch biosynthesis and grain filling were identified. Notably, this includes Class II trehalose 6-phosphate synthases, Hexokinase1 , and Apetala2 transcription factor-like (AP2/ERF) transcription factors. Additionally, our results provide insight into the mechanism of Sugary enhancer1 , suggesting a potential role in regulating GA signaling via GRAS transcription factor Scarecrow-like1 .more » « less
An official website of the United States government
