Massive submarine basalt flows were sampled at five sites on the Tristan‐Gough‐Walvis hotspot track in the South Atlantic by International Oceanic Discovery Program Expeditions 391/397T, where the plume was interacting with a mid‐ocean ridge, a setting similar to that the of modern Iceland. High resolution XRF core scans document significant internal chemical variations with depth in these flows. Some of this reflects basal olivine accumulation. However, some examples have “scallop‐shaped” patterns that are interpreted to represent influxes of new magma during flow lobe inflation with successive lava injections focused toward the base of the flow unit. Olivine concentration in the deeper parts of the flow is interpreted to reflect top‐down tapping of a vertically zoned magma chamber, with the upper part of the chamber erupting first, and successive eruptive pulses tapping progressively deeper levels of the stratified chamber. The occurrence of massive submarine lava flows requires high eruptive fluxes relative to pillow lava formation. Propagation of these massive flows is favored by (a) high sea water confining pressures, which inhibit vesiculation and keep effective viscosity low and dissolved volatile content high, and (b) chill zones and thick viscoelastic crusts of quenched lava on the flow tops, which effectively insulate the flow interior from ambient temperatures. The formation of a thin film of super‐heated steam on the upper flow surface may similarly enhance the insulation. Evidence suggests that similar massive flows on the seafloor may extend many kilometers from their vents. 
                        more » 
                        « less   
                    
                            
                            Vapor Bubbles and Velocity Control on the Cooling Rates of Lava and Pyroclasts During Submarine Eruptions
                        
                    
    
            Abstract Investigating the conditions behind the formation of pyroclast textures and lava flow morphologies is important to understand the dynamics of submarine volcanic eruptions, which are hard to observe. The development of clast textures and lava morphologies depends on the competing effects of their eruption rates and the rates of solidification. While eruption rates are governed by subsurface magmatic processes, the solidification timescales depend on the rate of heat loss from lava to the external water. However, the effect of the speed of lava flow or clast on their solidification timescales under two‐phase (liquid water and vapor bubbles) water boiling conditions is poorly constrained. Using laboratory experiments with remelted igneous rocks, we investigate the effect of the relative motion between lava and external water on its cooling timescale. We use a range of water speed (0–12.5 cm s−1) in our experiments while keeping our sample stationary to simulate a range of relative speed between lava and ambient water. Using transient heat transfer modeling, we find that heat flux from the surface of the sample to the external water overall increases with increasing water speed. We find heat transfer coefficients of up to ∼1.72 × 103 W m−2 K−1. The implications of high heat flux on the formation of solid lava crust under submarine conditions are discussed. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10420780
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 127
- Issue:
- 8
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The oceanic crust consists mostly of basalt, but more evolved compositions may be far more common than previously thought. To aid in distinguishing rhyolite from basaltic lava and help guide sampling and understand spatial distribution, we constructed a classifier using neural networks and fuzzy inference to recognize rhyolite from its lava morphology in sonar data. The Alarcon Rise is ideal to study the relationship between lava flow morphology and composition, because it exhibits a full range of lava compositions in a well-mapped ocean ridge segment. This study shows that the most dramatic geomorphic threshold in submarine lava separates rhyolitic lava from lower-silica compositions. Extremely viscous rhyolite erupts as jagged lobes and lava branches in submarine environments. An automated classification of sonar data is a useful first-order tool to differentiate submarine rhyolite flows from widespread basalts, yielding insights into eruption, emplacement, and architecture of the ocean crust.more » « less
- 
            Explosive eruption jets rising through relatively shallow water layers form eruption columns that can deliver volcanic ash, gases, and entrained water to the atmosphere and ocean in sequence or simultaneously, depending on eruption source parameters (Gilchrist et al. 2023). Despite the mesospheric eruption column height of the January 15, 2022 eruption of Hunga Tonga-Hunga Ha’apai (HTHH), the majority of erupted material was delivered to the surrounding seafloor via submarine pyroclastic density currents (PDCs). Deposits of HTHH show evidence of axisymmetric terraced deposits, which we show are linked to the mass eruption rate and dynamics of column collapse. We use scaled analog experiments on multiphase sand-water fountains injected into water layers of varying depth to model the collapse dynamics of shallow water eruption columns and to link fountain source conditions to deposit topography. The source strength of multiphase fountains predicts whether they collapse periodically or continuously via sedimentation waves with varying frequency and momentum. In turn, the frequency and momentum of sedimentation waves impacting the tank base determines whether ground-hugging gravity currents flowing out of the sedimentation wave impact zone are initially erosive or depositional. On the basis of experiments, we propose that syn-eruptive shallow submarine caldera deposits that show evidence of terracing and proximal scouring are linked to relatively strong eruption jets in the regime where the jet is in partial collapse or total collapse. In these regimes, the eruption jet collapses periodically as sedimentation waves that erode the deposit in the impact zone and transition into submarine PDCs that deposit the sedimentation wave mixture into regularly spaced terraces thereafter (Fig. 1, black boxes). In contrast, we expect weak eruption jets to occur in the total collapse regime where sedimentation waves descend in rapid succession and effectively supply submarine PDCs continuously which, in turn, build deposits lacking terraces (Fig. 1, blue box). For common values of caldera eruption source parameters, we link submarine PDC deposit morphology to eruption jet strength and plausible mass eruption rates.more » « less
- 
            Abstract Seafloor volcanic eruptions are difficult to directly observe due to lengthy eruption cycles and the remote location of mid‐ocean ridges. Volcanic eruptions in 2005–2006 at 9°50′N on the East Pacific Rise have been well documented, but the lava volume and flow extent remain uncertain because of the limited near‐bottom bathymetric data. We present near‐bottom data collected during 19 autonomous underwater vehicle (AUV)Sentrydives at 9°50′N in 2018, 2019, and 2021. The resulting 1 m‐resolution bathymetric grid and 20 cm‐resolution sidescan sonar images cover 115 km2, and span the entire area of the 2005–2006 eruptions, including an 8 km2pre‐eruption survey collected with AUVABEin 2001. Pre‐ and post‐eruption surveys, combined with sidescan sonar images and seismo‐acoustic impulsive events recorded during the eruptions, are used to quantify the lava flow extent and to estimate changes in seafloor depth caused by lava emplacement. During the 2005–2006 eruptions, lava flowed up to ∼3 km away from the axial summit trough, covering an area of ∼20.8 km2; ∼50% larger than previously thought. Where pre‐ and post‐eruption surveys overlap, individual flow lobes can be resolved, confirming that lava thickness varies from ∼1 to 10 m, and increases with distance from eruptive fissures. The resulting lava volume estimate indicates that ∼57% of the melt extracted from the axial melt lens probably remained in the subsurface as dikes. These observations provide insights into recharge cycles in the subsurface magma system, and are a baseline for studying future eruptions at the 9°50′N area.more » « less
- 
            Abstract Melt composition, temperature, and crystallinity are often seen as the three most important characteristics driving lava rheology, which controls eruptive behavior. Traditional methods of measuring the viscosity of crystallizing basalts often yield different mineral characteristics to natural samples and are typically bubble-free. To quantify the viscosity of basalts inclusive of bubble and crystal cargo, we developed a new technique to measure high-temperature three-phase isothermal lava viscosity and applied it to samples from the 2018 eruption of Kīlauea. This new experimental technique begins at subliquidus temperatures, preserving original phenocrysts. A short experimental duration allows for the retention of most of the original bubble population (19%–31% vs. 36% in the original lava) and accurate replication of crystal textures from field samples, as documented in quenched postexperiment samples. The observed rheological behavior in these experiments, conducted at syneruptive temperatures (1150–1105 °C) and strain rates (0.4–18 s–1), should therefore be representative of the lava flows. We measured average viscosities of 116 Pa·s at 1150 °C to 167 Pa·s at 1115 °C (i.e., only 10%–25% higher than calculated liquid viscosities at those temperatures) and a maximum of 1800 Pa·s at 1105 °C. These results are much lower than viscosity measured in traditional bubble-free experiments, which plateaued at ~14,000 Pa·s at 1115 °C. Our results suggest the effect of bubbles in three-phase magmas may be greater than predicted by models based on two-phase bubbly liquids, and this effect must be included in realistic lava flow rheology models. The method proposed here supplies a framework for providing the necessary experimental constraints.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
