Global soil organic carbon (SOC) stocks may decline with a warmer climate. However, model projections of changes in SOC due to climate warming depend on microbially-driven processes that are usually parameterized based on laboratory incubations. To assess how lab-scale incubation datasets inform model projections over decades, we optimized five microbially-relevant parameters in the Microbial-ENzyme Decomposition (MEND) model using 16 short-term glucose (6-day), 16 short-term cellulose (30-day) and 16 long-term cellulose (729-day) incubation datasets with soils from forests and grasslands across contrasting soil types. Our analysis identified consistently higher parameter estimates given the short-term versus long-term datasets. Implementing the short-term and long-term parameters, respectively, resulted in SOC loss (–8.2 ± 5.1% or –3.9 ± 2.8%), and minor SOC gain (1.8 ± 1.0%) in response to 5 °C warming, while only the latter is consistent with a meta-analysis of 149 field warming observations (1.6 ± 4.0%). Comparing multiple subsets of cellulose incubations (i.e., 6, 30, 90, 180, 360, 480 and 729-day) revealed comparable projections to the observed long-term SOC changes under warming only on 480- and 729-day. Integrating multi-year datasets of soil incubations (e.g., > 1.5 years) with microbial models can thus achieve more reasonable parameterization of key microbial processes and subsequently boost the accuracy and confidence of long-term SOC projections.
It is widely accepted that phosphorus (P) limits microbial metabolic processes and thus soil organic carbon (SOC) decomposition in tropical forests. Global change factors like elevated atmospheric nitrogen (N) deposition can enhance P limitation, raising concerns about the fate of SOC. However, how elevated N deposition affects the soil priming effect (PE) (i.e., fresh C inputs induced changes in SOC decomposition) in tropical forests remains unclear. We incubated soils exposed to 9 years of experimental N deposition in a subtropical evergreen broadleaved forest with two types of13C‐labeled substrates of contrasting bioavailability (glucose and cellulose) with and without P amendments. We found that N deposition decreased soil total P and microbial biomass P, suggesting enhanced P limitation. In P unamended soils, N deposition significantly inhibited the PE. In contrast, adding P significantly increased the PE under N deposition and by a larger extent for the PE of cellulose (PEcellu) than the PE of glucose (PEglu). Relative to adding glucose or cellulose solely, adding P with glucose alleviated the suppression of soil microbial biomass and C‐acquiring enzymes induced by N deposition, whereas adding P with cellulose attenuated the stimulation of acid phosphatase (AP) induced by N deposition. Across treatments, the PEgluincreased as C‐acquiring enzyme activity increased, whereas the PEcelluincreased as AP activity decreased. This suggests that P limitation, enhanced by N deposition, inhibits the soil PE through varying mechanisms depending on substrate bioavailability; that is, P limitation regulates the PEgluby affecting soil microbial growth and investment in C acquisition, whereas regulates the PEcelluby affecting microbial investment in P acquisition. These findings provide new insights for tropical forests impacted by N loading, suggesting that expected changes in C quality and P limitation can affect the long‐term regulation of the soil PE.
more » « less- Award ID(s):
- 1916622
- NSF-PAR ID:
- 10420809
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 29
- Issue:
- 14
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 4081-4093
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Ecosystem functional responses such as soil CO2emissions are constrained by microclimate, available carbon (C) substrates and their effects upon microbial activity. In tropical forests, phosphorus (P) is often considered as a limiting factor for plant growth, but it is still not clear whether P constrains microbial CO2emissions from soils. In this study, we incubated seven tropical forest soils from Brazil and Puerto Rico with different nutrient addition treatments (no addition, Control; C, nitrogen (N) or P addition only; and combined C, N and P addition (CNP)). Cumulative soil CO2emissions were fit with a Gompertz model to estimate potential maximum cumulative soil CO2emission (
C m ) and the rate of change of soil C decomposition (k ). Quantitative polymerase chain reaction (qPCR) was conducted to quantify microbial biomass as bacteria and fungi. Results showed that P addition alone or in combination with C and N enhancedC m , whereas N addition usually reducedC m , and neither N nor P affected microbial biomass. Additions of CNP enhancedk , increased microbial abundances and altered fungal to bacterial ratios towards higher fungal abundance. Additions of CNP, however, tended to reduceC m for most soils when compared to C additions alone, suggesting that microbial growth associated with nutrient additions may have occurred at the expense of C decomposition. Overall, this study demonstrates that soil CO2emission is more limited by P than N in tropical forest soils and those effects were stronger in soils low in P.Highlights A laboratory incubation study was conducted with nitrogen, phosphorus or carbon addition to tropical forest soils. Soil CO2emission was fitted with a Gompertz model and soil microbial abundance was quantified using qPCR. Phosphorus addition increased model parameters
C m and soil CO2emission, particularly in the Puerto Rico soils. Soil CO2emission was more limited by phosphorus than nitrogen in tropical forest soils. -
Abstract Nitrogen (N) additions often decrease soil respiration and increase soil organic carbon (C) stock. However, it is unclear how microbial substrates may shift with N additions and increasing temperature. Leveraging 12 years of N fertilization experiments and the associated shift in the dominant vegetation from C4to C3, we explored the δ13C‐CO2and temperature sensitivities of respired CO2and extracellular enzyme activities in control and fertilized soils. N additions increased cellulose‐decaying extracellular enzyme activity while respiration remained similar between the control and fertilized soils. Temperature sensitivity of cellulose‐decaying extracellular enzyme activity decreased with the N additions. The δ13C‐CO2data reveal that, as temperature increased, microbes in fertilized soils changed their dominant substrate from bulk soil organic C to plant litterfall. Our results suggest that long‐term N fertilization imposed C limitation on microbes, leading to enhanced microbial efforts to acquire C. This study highlights how long‐term N additions can promote the relative preservation of organic C in mineral soil while litterfall, the precursor to mineral‐associated C, is increasingly decayed as temperatures increase.
-
Abstract Warming‐induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2) over comparatively short timescales. Using an automated sensor system, we measured soil CO2flux dynamics in the Colorado Desert—a system characterized by pronounced transitions from dry‐to‐wet soil conditions—through a multi‐year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2pulses following wetting were highly predictable from peak instantaneous CO2flux measurements. CO2pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2pulses in low N deposition sites, whereas adding N decreased CO2pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2fluxes reported globally at 299.5 μmol CO2 m−2 s−1. Our results suggest that soils have the capacity to emit high amounts of CO2within small timeframes following infrequent wetting, and pulse sizes reflect a non‐linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2emissions occurred when multiple resources were amended simultaneously in historically resource‐limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.
-
Abstract Manganese (Mn) is a redox‐active micronutrient that has been shown to accelerate plant litter decomposition; however, the effect of Mn‐promoted decomposition on soil C storage is unclear. We present a novel biogeochemical model simulating how Mn bioavailability influences soil organic C (SOC) stocks in a soil profile (<50 cm) within a temperate forest. In our model, foliar Mn increased in response to increasing soluble Mn released through Mn‐oxide (birnessite) dissolution in mineral soil layers. The ensuing Mn enrichment in leaf litter redistributed Mn to the surface forest floor layer, promoted enzymatic oxidation of lignin, and decreased SOC stocks. Total SOC loss was partially mitigated by accumulation of lignin‐oxidation products as mineral‐associated organic C. We also explored how Mn‐driven changes to C storage interacted with effects of N deposition and warming. Nitrogen enrichment inhibited Mn‐dependent lignin degradation, increasing SOC stocks and weakening their dependence on Mn bioavailability. Warming stimulated decomposition and reduced C stocks but was less effective at low Mn bioavailability. Our model results suggest that SOC stocks are sensitive to Mn bioavailability because increased plant uptake redistributes Mn to surface soils where it can enhance litter decomposition. Based on our simulations, we predict that Mn becomes limiting to litter decomposition where Mn is poorly soluble. Depletion of bioavailable Mn or other cofactors that are critical to decomposition could limit the response of organic C stocks to warming over time, but quantitative projections of the role of Mn bioavailability in regulating decomposition requires additional measurements to constrain model uncertainties.