skip to main content

Title: Comparison of Extreme Coastal Flooding Events between Tropical and Midlatitude Weather Systems in the Delaware and Chesapeake Bays for 1980–2019
Abstract Coastal flooding is one of the most costly and deadly natural hazards facing the U.S. mid-Atlantic region today. Impacts in this heavily populated and economically significant region are caused by a combination of the location’s exposure and natural forcing from storms and sea level rise. Tropical cyclones (TCs) and midlatitude (ML) weather systems each have caused extreme coastal flooding in the region. Skew surge was computed over each tidal cycle for the past 40 years (1980–2019) at several tide gauges in the Delaware and Chesapeake Bays to compare the meteorological component of surge for each weather type. Although TCs cause higher mean surges, ML weather systems can produce surges just as severe and occur much more frequently, peaking in the cold season (November–March). Of the top 10 largest surge events, TCs account for 30%–45% in the Delaware and upper Chesapeake Bays and 40%–45% in the lower Chesapeake Bay. This percentage drops to 10%–15% for larger numbers of events in all regions. Mean sea level pressure and 500-hPa geopotential height (GPH) fields of the top 10 surge events from ML weather systems show a low pressure center west-southwest of “Delmarva” and a semistationary high pressure center to the northeast prior to maximum surge, producing strong easterly winds. Low pressure centers intensify under upper-level divergence as they travel eastward, and the high pressure centers are near the GPH ridges. During lower-bay events, the low pressure centers develop farther south, intensifying over warmer coastal waters, with a south-shifted GPH pattern relative to upper-bay events. Significance Statement Severe coastal flooding is a year-round threat in the U.S. mid-Atlantic region, and impacts are projected to increase in magnitude and frequency. Research into the meteorological contribution to storm surge, separate from mean sea level and tidal phase, will increase the scientific understanding and monitoring of changing atmospheric conditions. Tropical cyclones and midlatitude weather systems both significantly impact the mid-Atlantic region during different times of year. However, climate change may alter the future behavior of these systems differently. Understanding the synoptic environment and quantifying the surge response and subbay geographic variability of each weather system in this region will aid in public awareness, near-term emergency preparation, and long-term planning for coastal storms.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Page Range / eLocation ID:
457 to 472
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal flooding poses the greatest threat to human life and is often the most common source of damage from coastal storms. From 1980 to 2020, the top 6, and 17 of the top 25, costliest natural disasters in the U.S. were caused by coastal storms, most of these tropical systems. The Delaware and Chesapeake Bays, two of the largest and most densely populated estuaries in the U.S. located in the Mid-Atlantic coastal region, have been significantly impacted by strong tropical cyclones in recent decades, notably Hurricanes Isabel (2003), Irene (2011), and Sandy (2012). Current scenarios of future climate project an increase in major hurricanes and the continued rise of sea levels, amplifying coastal flooding threat. We look at all North Atlantic tropical cyclones (TC) in the International Best Track Archive for Climate Stewardship (IBTrACS) database that came within 750 km of the Delmarva Peninsula from 1980 to 2019. For each TC, skew surge and storm tide are computed at 12 NOAA tide gauges throughout the two bays. Spatial variability of the detrended and normalized skew surge is investigated through cross-correlations, regional storm rankings, and comparison to storm tracks. We find Hurricanes Sandy (2012) and Isabel (2003) had the largest surge impact on the Delaware and Chesapeake Bay, respectively. Surge response to TCs in upper and lower bay regions are more similar across bays than to the opposing region in their own bay. TCs that impacted lower bay more than upper bay regions tended to stay offshore east of Delmarva, whereas TCs that impacted upper bay regions tended to stay to the west of Delmarva. Although tropical cyclones are multi-hazard weather events, there continues to be a need to improve storm surge forecasting and implement strategies to minimize the damage of coastal flooding. Results from this analysis can provide insight on the potential regional impacts of coastal flooding from tropical cyclones in the Mid-Atlantic. 
    more » « less
  2. Extreme storm surges can overwhelm many coastal flooding protection measures in place and cause severe damages to private communities, public infrastructure, and natural ecosystems. In the US Mid-Atlantic, a highly developed and commercially active region, coastal flooding is one of the most significant natural hazards and a year-round threat from both tropical and extra-tropical cyclones. Mean sea levels and high-tide flood frequency has increased significantly in recent years, and major storms are projected to increase into the foreseeable future. We estimate extreme surges using hourly water level data and harmonic analysis for 1980–2019 at 12 NOAA tide gauges in and around the Delaware and Chesapeake Bays. Return levels (RLs) are computed for 1.1, 3, 5, 10, 25, 50, and 100-year return periods using stationary extreme value analysis on detrended skew surges. Two traditional approaches are investigated, Block Maxima fit to General Extreme Value distribution and Points-Over-Threshold fit to Generalized Pareto distribution, although with two important enhancements. First, the GEV r -largest order statistics distribution is used; a modified version of the GEV distribution that allows for multiple maximum values per year. Second, a systematic procedure is used to select the optimum value for r (for the BM/GEVr approach) and the threshold (for the POT/GP approach) at each tide gauge separately. RLs have similar magnitudes and spatial patterns from both methods, with BM/GEVr resulting in generally larger 100-year and smaller 1.1-year RLs. Maximum values are found at the Lewes (Delaware Bay) and Sewells Point (Chesapeake Bay) tide gauges, both located in the southwest region of their respective bays. Minimum values are found toward the central bay regions. In the Delaware Bay, the POT/GP approach is consistent and results in narrower uncertainty bands whereas the results are mixed for the Chesapeake. Results from this study aim to increase reliability of projections of extreme water levels due to extreme storms and ultimately help in long-term planning of mitigation and implementation of adaptation measures. 
    more » « less
  3. Storm surge flooding caused by tropical cyclones is a devastating threat to coastal regions, and this threat is growing due to sea-level rise (SLR). Therefore, accurate and rapid projection of the storm surge hazard is critical for coastal communities. This study focuses on developing a new framework that can rapidly predict storm surges under SLR scenarios for any random synthetic storms of interest and assign a probability to its likelihood. The framework leverages the Joint Probability Method with Response Surfaces (JPM-RS) for probabilistic hazard characterization, a storm surge machine learning model, and a SLR model. The JPM probabilities are based on historical tropical cyclone track observations. The storm surge machine learning model was trained based on high-fidelity storm surge simulations provided by the U.S. Army Corps of Engineers (USACE). The SLR was considered by adding the product of the normalized nonlinearity, arising from surge-SLR interaction, and the sea-level change from 1992 to the target year, where nonlinearities are based on high-fidelity storm surge simulations and subsequent analysis by USACE. In this study, this framework was applied to the Chesapeake Bay region of the U.S. and used to estimate the SLR-adjusted probabilistic tropical cyclone flood hazard in two areas: One is an urban Virginia site, and the other is a rural Maryland site. This new framework has the potential to aid in reducing future coastal storm risks in coastal communities by providing robust and rapid hazard assessment that accounts for future sea-level rise. 
    more » « less
  4. Abstract River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p\0.001), resulting in migration rates of 218 m/year (0.22 km/year) and\0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L). 
    more » « less
  5. Two sessions were organized during the 2018 Fall AGU Meeting entitled, (1) Coastal Response to Extreme Events: Fidelity of Model Predictions of Surge, Inundation, and Morphodynamics and (2) Improved Observational and Modeling Skills to Understand the Hurricane and Winter Storm Induced Surge and Meteotsunami. The focus of these sessions was on examining the impact of natural disasters on estuarine and coastal regions worldwide, including the islands and mainland in the northwestern Atlantic and the northwestern Pacific. The key research interests are the investigations on the regional dynamics of storm surges, coastal inundations, waves, tides, currents, sea surface temperatures, storm inundations and coastal morphology using both numerical models and observations during tropical and extratropical cyclones. This Special Issue (SI) ‘Estuarine and coastal natural hazards’ in Estuarine Coastal and Shelf Science is an outcome of the talks presented at these two sessions. Five themes are considered (effects of storms of wave dynamics; tide and storm surge simulations; wave-current interaction during typhoons; wave effects on storm surges and hydrodynamics; hydrodynamic and morphodynamic responses to typhoons), arguably reflecting areas of greatest interest to researchers and policy makers. This synopsis of the articles published in the SI allows us to obtain a better understanding of the dynamics of natural hazards (e.g., storm surges, extreme waves, and storm induced inundation) from various physical aspects. The discussion in the SI explores future dimensions to comprehend numerical models with fully coupled windwave- current-morphology interactions at high spatial resolutions in the nearshore and surf zone during extreme wind events. In addition, it would be worthwhile to design numerical models incorporating climate change projections (sea level rise and global warming temperatures) for storm surges and coastal inundations to allow more precisely informed coastal zone management plans. 
    more » « less