- Award ID(s):
- 2135874
- PAR ID:
- 10420985
- Date Published:
- Journal Name:
- Open Repositories
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Incomplete and inconsistent connections between institutional repository holdings and the global data infrastructure inhibit research data discovery and reusability. Preventing metadata loss on the path from institutional repositories to the global research infrastructure can substantially improve research data reusability. The Realities of Academic Data Sharing (RADS) Initiative, funded by the National Science Foundation, is investigating institutional processes for improving research data FAIRness. Focal points of the RADS inquiry are to understand where researchers are sharing their data and to assess metadata quality, i.e., completeness, at six Data Curation Network (DCN) academic institutions: Cornell University, Duke University, University of Michigan, University of Minnesota, Washington University in St. Louis, and Virginia Tech. RADS is examining where researchers are storing their data, considering local institutional repositories and other popular repositories, and analyzing the completeness of the research data metadata stored in these institutional and other repositories. Metadata FAIRness (Findable, Accessible, Interoperable, Reusable) is used as the metric to assess metadata quality as FAIR complete. Research findings show significant content loss when metadata from local institutional repositories are compared to metadata found in DataCite. After examining the factors contributing to this metadata loss, RADS investigators are developing a set of recommended best practices for institutions to increase the quality of their scholarly metadata. Further, documentation such as README files are of particular importance not only for data reuse, but as sources containing valuable metadata such as Persistent Identifiers (PIDs). DOIs and related PIDs such as ORCID and ROR are still rarely used in institutional repositories. More frequent use would have a positive effect on discoverability, interoperability and reusability, especially when transferring to global infrastructure.more » « less
-
Abstract Persistent identifiers for research objects, researchers, organizations, and funders are the key to creating unambiguous and persistent connections across the global research infrastructure (GRI). Many repositories are implementing mechanisms to collect and integrate these identifiers into their submission and record curation processes. This bodes well for a well-connected future, but metadata for existing resources submitted in the past are missing these identifiers, thus missing the connections required for inclusion in the connected infrastructure. Re-curation of these metadata is required to make these connections. This paper introduces the global research infrastructure and demonstrates how repositories, and their user communities, can contribute to and benefit from connections to the global research infrastructure.
The Dryad Data Repository has existed since 2008 and has successfully re-curated the repository metadata several times, adding identifiers for research organizations, funders, and researchers. Understanding and quantifying these successes depends on measuring repository and identifier connectivity. Metrics are described and applied to the entire repository here.
Identifiers (Digital Object Identifiers, DOIs) for papers connected to datasets in Dryad have long been a critical part of the Dryad metadata creation and curation processes. Since 2019, the portion of datasets with connected papers has decreased from 100% to less than 40%. This decrease has significant ramifications for the re-curation efforts described above as connected papers have been an important source of metadata. In addition, missing connections to papers make understanding and re-using datasets more difficult.
Connections between datasets and papers can be difficult to make because of time lags between submission and publication, lack of clear mechanisms for citing datasets and other research objects from papers, changing focus of researchers, and other obstacles. The Dryad community of members, i.e. users, research institutions, publishers, and funders have vested interests in identifying these connections and critical roles in the curation and re-curation efforts. Their engagement will be critical in building on the successes Dryad has already achieved and ensuring sustainable connectivity in the future.
-
Over the last decade, significant changes have affected the work that data repositories of all kinds do. First, the emergence of globally unique and persistent identifiers (PIDs) has created new opportunities for repositories to engage with the global research community by connecting existing repository resources to the global research infrastructure. Second, repository use cases have evolved from data discovery to data discovery and reuse, significantly increasing metadata requirements.To respond to these evolving requirements, we need retrospective and on-going curation, i.e. re-curation, processes that 1) find identifiers and add them to existing metadata to connect datasets to a wider range of communities, and 2) add elements that support reuse to globally connected metadata.The goal of this work is to introduce the concept of re-curation with representative examples that are generally applicable to many repositories: 1) increasing completeness of affiliations and identifiers for organizations and funders in the Dryad Repository and 2) measuring and increasing FAIRness of DataCite metadata beyond required fields for institutional repositories.These re-curation efforts are a critical part of reshaping existing metadata and repository processes so they can take advantage of new connections, engage with global research communities, and facilitate data reuse.
-
This is a story about the challenges and opportunities that surfaced while answering a deceptively complex question - where's the data? As faculty and researchers publish articles, datasets, and other research outputs to meet promotion and tenure requirements, address federal funding policies, and institutional open access and data sharing policies, many online locations for publishing these materials have developed over time. How can we capture where all of the research generated on an academic campus is shared and preserved? This presentation will discuss how our multi-institution collaboration, the Reality of Academic Data Sharing (RADS) Initiative, sought to answer this question. We programmatically pulled DOIs from DataCite and CrossRef, making the naive assumption that these platforms, the two predominant DOI registration agencies for US data, would present us with a neutral and unbiased view of where data from our affiliated researchers were shared. However, as we dug into the data, we found inconsistencies in the use and completeness of the necessary metadata fields for our questions, as well as differences in how DOIs were assigned across repositories. Additionally, we recognized the systematic and privileged bias introduced by our choice of data sources. Specifically, while DataCite and CrossRef provide easy discovery of research outputs because they aggregate DOIs, they are also costly commercial services. Many repositories that cannot afford such services or lack local staffing and knowledge required to use these services are left out of the technology that has recently been labeled “global research infrastructure”. Our presentation will identify the challenges we encountered in conducting this research specifically around finding the data, and cleaning and interpreting the data. We will further engage the audience in a discussion around increasing representation in the global research infrastructure to discover and account for more research outputs.more » « less
-
Abstract Genetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome‐scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (
n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data‐sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever.