skip to main content


Title: Integrated quantum optical phase sensor in thin film lithium niobate
Abstract

The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.

 
more » « less
NSF-PAR ID:
10421060
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Squeezed light has long been used to enhance the precision of a single optomechanical sensor. An emerging set of proposals seeks to use arrays of optomechanical sensors to detect weak distributed forces, for applications ranging from gravity-based subterranean imaging to dark matter searches; however, a detailed investigation into the quantum-enhancement of this approach remains outstanding. Here, we propose an array of entanglement-enhanced optomechanical sensors to improve the broadband sensitivity of distributed force sensing. By coherently operating the optomechanical sensor array and distributing squeezing to entangle the optical fields, the array of sensors has a scaling advantage over independent sensors (i.e.,$$\sqrt{M}\to M$$MM, whereMis the number of sensors) due to coherence as well as joint noise suppression due to multi-partite entanglement. As an illustration, we consider entanglement-enhancement of an optomechanical accelerometer array to search for dark matter, and elucidate the challenge of realizing a quantum advantage in this context.

     
    more » « less
  2. Quantum states of light can enable sensing configurations with sensitivities beyond the shot-noise limit (SNL). In order to better take advantage of available quantum resources and obtain the maximum possible sensitivity, it is necessary to determine fundamental sensitivity limits for different possible configurations for a given sensing system. Here, due to their wide applicability, we focus on optical resonance sensors, which detect a change in a parameter of interest through a resonance shift. We compare their fundamental sensitivity limits set by the quantum Cramér-Rao bound (QCRB) based on the estimation of changes in transmission or phase of a probing bright two-mode squeezed state (bTMSS) of light. We show that the fundamental sensitivity results from an interplay between the QCRB and the transfer function of the system. As a result, for a resonance sensor with a Lorentzian lineshape a phase-based scheme outperforms a transmission-based one for most of the parameter space; however, this is not the case for lineshapes with steeper slopes, such as higher order Butterworth lineshapes. Furthermore, such an interplay results in conditions under which the phase-based scheme provides a higher sensitivity but a smaller degree of quantum enhancement than the transmission-based scheme. We also study the effect of losses external to the sensor on the degree of quantum enhancement and show that for certain conditions, probing with a classical state can provide a higher sensitivity than probing with a bTMSS. Finally, we discuss detection schemes, namely optimized intensity-difference and optimized homodyne detection, that can achieve the fundamental sensitivity limits even in the presence of external losses. 
    more » « less
  3. Sanders, Glen A. ; Lieberman, Robert A. ; Udd Scheel, Ingrid (Ed.)
    Evanescent wave sensors in photonic integrated circuits have been demonstrated for gas sensing applications. While some methods rely on the distinctive response of certain polymers for sensing specific gases, absorption spectroscopy identifies any gas uniquely from their unique vibration signatures. Based on the Beer-Lambert principle, the sensitivity of absorption by a gas on chip relies on the length of the sensing region, the optical overlap integral with the analyte gas and the absorption cross-section at the wavelength with the fundamental vibration signature. The overlap of the optical mode with the analyte has been enhanced in photonic devices by combining slot waveguide confinements with photonic crystal slow light effects. While the absorption cross-section is a property of the gas, the length of the sensing region is limited by the available area on a chip and waveguide propagation losses that limit the minimum signal to noise ratio. In this paper, we show that by incorporating reflecting loop mirrors, the absorption path length can be doubled for the same geometric length of the absorption sensing waveguide. Light from a waveguide is split into two paths, each with a slow light photonic crystal waveguide, by a 2×2 multimode interference (MMI) power splitter. Each path is terminated by a loop mirror that causes the light to retrace its path back down the sensing arms thereby doubling the optical path length over which light interacts with the analyte. Results on the enhancement of phase sensitivity and absorbance sensitivity in the interferometric configuration are presented 
    more » « less
  4. Optomechanical systems have been exploited in ultrasensitive measurements of force, acceleration and magnetic fields. The fundamental limits for optomechanical sensing have been extensively studied and now well understood—the intrinsic uncertainties of the bosonic optical and mechanical modes, together with backaction noise arising from interactions between the two, dictate the standard quantum limit. Advanced techniques based on non-classical probes, in situ ponderomotive squeezed light and backaction-evading measurements have been developed to overcome the standard quantum limit for individual optomechanical sensors. An alternative, conceptually simpler approach to enhance optomechanical sensing rests on joint measurements taken by multiple sensors. In this configuration, a pathway to overcome the fundamental limits in joint measurements has not been explored. Here we demonstrate that joint force measurements taken with entangled probes on multiple optomechanical sensors can improve the bandwidth in the thermal-noise-dominant regime or the sensitivity in the shot-noise-dominant regime. Moreover, we quantify the overall performance of entangled probes with the sensitivity–bandwidth product and observe a 25% increase compared with that of classical probes. The demonstrated entanglement-enhanced optomechanical sensors would enable new capabilities for inertial navigation, acoustic imaging and searches for new physics. 
    more » « less
  5. We propose a novel implementation of a trapped- atom Sagnac gyroscope based on the interference between matter- wave solitons confined around an optical microring resonator. Our integrated nanophotonic approach to trapped atom interferometry combines the long-term stability and quantum-limited sensitivity of ultracold matter-wave interferometers with the robustness, scalability and low power operation of nanophotonic architectures. The use of optical microresonators for atomic confinement ensures disorder-free symmetric waveguides for the confined atoms, a high degree of vibration insensitivity owing to the reciprocal structure of the waveguide, and enhanced bias and scale-factor stability via concurrent feedback stabilization of the microresonator. We have performed detailed quantum simulations based on demonstrated experimental parameters to confirm stable dispersion-free propagation of matter-wave solitons around the microresonator and the appearance of high contrast interference fringes due to the accrued Sagnac phase shift. We estimate the shot-noise limited rotation sensitivity of this gyroscope to be 0.8urad/s/rt.Hz for single-loop propagation of the solitons around a microring of radius 1 mm, with the possibility of substantial improvements via multiloop propagation of the solitons, fabrication of microring resonators of larger diameter, and the use of quantum-correlated states such as spin- squeezed quantum states. The proposed device illustrates the benefits of harnessing quantum many-body states such as matter- wave solitons for quantum-enhanced inertial sensing applications. 
    more » « less