The catalytic enantioselective synthesis of α‐chiral alkenes and alkynes represents a powerful strategy for rapid generation of molecular complexity. Herein, we report a transient directing group (TDG) strategy to facilitate site‐selective palladium‐catalyzed reductive Heck‐type hydroalkenylation and hydroalkynylation of alkenylaldehyes using alkenyl and alkynyl bromides, respectively, allowing for construction of a stereocenter at the δ‐position with respect to the aldehyde. Computational studies reveal the dual beneficial roles of rigid TDGs, such as L‐
The catalytic enantioselective synthesis of α‐chiral alkenes and alkynes represents a powerful strategy for rapid generation of molecular complexity. Herein, we report a transient directing group (TDG) strategy to facilitate site‐selective palladium‐catalyzed reductive Heck‐type hydroalkenylation and hydroalkynylation of alkenylaldehyes using alkenyl and alkynyl bromides, respectively, allowing for construction of a stereocenter at the δ‐position with respect to the aldehyde. Computational studies reveal the dual beneficial roles of rigid TDGs, such as L‐
- NSF-PAR ID:
- 10421068
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 29
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract tert ‐leucine, in promoting TDG binding and inducing high levels of enantioselectivity in alkene insertion with a variety of migrating groups. -
Abstract Palladium(II)‐catalyzed C(alkenyl)−H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)−H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3‐diene with high regio‐ and
E /Z ‐selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2‐aryl‐substituted 1,3‐dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X‐ray crystallography, and the energy profiles of the C(alkenyl)−H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations. -
Abstract Palladium(II)‐catalyzed C(alkenyl)−H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)−H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3‐diene with high regio‐ and
E /Z ‐selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2‐aryl‐substituted 1,3‐dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X‐ray crystallography, and the energy profiles of the C(alkenyl)−H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations. -
Abstract This work discloses the first general solution for converting oligoalkynes into polyaromatic polycyclic systems free of pentagonal defects. The efficiency and selectivity of this cascade originate from the combination of the Bu3Sn‐mediated TDG (traceless directing group) cascade transformations of skipped alkynes where the reactivity of the key radical precursor is tempered by hybridization effects. This approach ensures that the final structure consists of only six‐membered rings. Practical implementation of this strategy is readily accomplished by incorporation of a suitably‐substituted alkene as a final unit in the domino transformation. This strategy opens a new avenue for the controlled preparation of polyaromatic ribbons. The resulting ester functionality can be used for an additional Friedel–Crafts ring closure which effectively anneals two extra cycles with distinct electronic features to the extended aromatic system formed by the radical cascade.
-
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp 3 )–H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C–H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.more » « less