Abstract The ability to monitor types, concentrations, and activities of different biomolecules is essential to obtain information about the molecular processes within cells. Successful monitoring requires a sensitive and selective tool that can respond to these molecular changes. Molecular aptamer beacon (MAB) is a molecular imaging and detection tool that enables visualization of small or large molecules by combining the selectivity and sensitivity of molecular beacon and aptamer technologies. MAB design leverages structure switching and specific recognition to yield an optical on/off switch in the presence of the target. Various donor–quencher pairs such as fluorescent dyes, quantum dots, carbon‐based materials, and metallic nanoparticles have been employed in the design of MABs. In this work, the diverse biomedical applications of MAB technology are focused on. Different conjugation strategies for the energy donor–acceptor pairs are addressed, and the overall sensitivities of each detection system are discussed. The future potential of this technology in the fields of biomedical research and diagnostics is also highlighted.
more »
« less
Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles
The fast, accurate detection of biomolecules, ranging from nucleic acids and small molecules to proteins and cellular secretions, plays an essential role in various biomedical applications. These include disease diagnostics and prognostics, environmental monitoring, public health, and food safety. Aptamer recognition (DNA or RNA) has gained extensive attention for biomolecular detection due to its high selectivity, affinity, reproducibility, and robustness. Concurrently, biosensing with nanoparticles has been widely used for its high carrier capacity, stability and feasibility of incorporating optical and catalytic activity, and enhanced diffusivity. Biosensors based on aptamers and nanoparticles utilize the combination of their advantages and have become a promising technology for detecting of a wide variety of biomolecules with high sensitivity, reliability, specificity, and detection speed. Via various sensing mechanisms, target biomolecules have been quantified in terms of optical (e.g., colorimetric and fluorometric), magnetic, and electrical signals. In this review, we summarize the recent advances in and compare different aptamer–nanoparticle-based biosensors by nanoparticle types and detection mechanisms. We also share our views on the highlights and challenges of the different nanoparticle-aptamer-based biosensors.
more »
« less
- PAR ID:
- 10421098
- Date Published:
- Journal Name:
- Biosensors
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 2079-6374
- Page Range / eLocation ID:
- 474
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor‐intensive to develop aptamer‐based sensors for small‐molecule detection. Here, we review the challenges and advances in the isolation and characterization of small‐molecule‐binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer–target binding and structure. Afterwards, we discuss various small‐molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer‐based small‐molecule sensors for real‐world applications.more » « less
-
Assessing Plasmonic Nanoprobes in Electromagnetic Field Enhancement for SERS Detection of BiomarkersThe exploration of the plasmonic field enhancement of nanoprobes consisting of gold and magnetic core@gold shell nanoparticles has found increasing application for the development of surface-enhanced Raman spectroscopy (SERS)-based biosensors. The understanding of factors controlling the electromagnetic field enhancement, as a result of the plasmonic field enhancement of the nanoprobes in SERS biosensing applications, is critical for the design and preparation of the optimal nanoprobes. This report describes findings from theoretical calculations of the electromagnetic field intensity of dimer models of gold and magnetic core@gold shell nanoparticles in immunoassay SERS detection of biomarkers. The electromagnetic field intensities for a series of dimeric nanoprobes with antibody–antigen–antibody binding defined interparticle distances were examined in terms of nanoparticle sizes, core–shell sizes, and interparticle spacing. The results reveal that the electromagnetic field enhancement not only depended on the nanoparticle size and the relative core size and shell thicknesses of the magnetic core@shell nanoparticles but also strongly on the interparticle spacing. Some of the dependencies are also compared with experimental data from SERS detection of selected cancer biomarkers, showing good agreement. The findings have implications for the design and optimization of functional nanoprobes for SERS-based biosensors.more » « less
-
Owing to their merits of simple, fast, sensitive, and low cost, electrochemical biosensors have been widely used for the diagnosis of infectious diseases. As a critical element, the receptor determines the selectivity, stability, and accuracy of the electrochemical biosensors. Molecularly imprinted polymers (MIPs) and surface imprinted polymers (SIPs) have great potential to be robust artificial receptors. Therefore, extensive studies have been reported to develop MIPs/SIPs for the detection of infectious diseases with high selectivity and reliability. In this review, we discuss mechanisms of recognition events between imprinted polymers with different biomarkers, such as signaling molecules, microbial toxins, viruses, and bacterial and fungal cells. Then, various preparation methods of MIPs/SIPs for electrochemical biosensors are summarized. Especially, the methods of electropolymerization and micro-contact imprinting are emphasized. Furthermore, applications of MIPs/SIPs based electrochemical biosensors for infectious disease detection are highlighted. At last, challenges and perspectives are discussed.more » « less
-
Fluorescent light-up aptamers (FLAPs) are well-performed biosensors for cellular imaging and the detection of different targets of interest, including RNA, non-nucleic acid molecules, metal ions, and so on. They could be easily designed and emit a strong fluorescence signal once bound to specified fluorogens. Recently, one unique aptamer called Mango-II has been discovered to possess a strong affinity and excellent fluorescent properties with fluorogens TO1-Biotin and TO3-Biotin. To explore the binding mechanisms, computational simulations have been performed to obtain structural and thermodynamic information about FLAPs at atomic resolution. AMOEBA polarizable force field, with the capability of handling the highly charged and flexible RNA system, was utilized for the simulation of Mango-II with TO1-Biotin and TO3-Biotin in this work. The calculated binding free energy using published crystal structures is in excellent agreement with the experimental values. Given the challenges in modeling complex RNA dynamics, our work demonstrates that MD simulation with a polarizable force field is valuable for understanding aptamer-fluorogen binding and potentially designing new aptamers or fluorogens with better performance.more » « less
An official website of the United States government

