skip to main content


Title: Turtle ants harbor metabolically versatile microbiomes with conserved functions across development and phylogeny
Abstract

Gut bacterial symbionts can support animal nutrition by facilitating digestion and providing valuable metabolites. However, changes in symbiotic roles between immature and adult stages are not well documented, especially in ants. Here, we explored the metabolic capabilities of microbiomes sampled from herbivorous turtle ant (Cephalotes sp.) larvae and adult workers through (meta)genomic screening and in vitro metabolic assays. We reveal that larval guts harbor bacterial symbionts with impressive metabolic capabilities, including catabolism of plant and fungal recalcitrant dietary fibers and energy-generating fermentation. Additionally, several members of the specialized adult gut microbiome, sampled downstream of an anatomical barrier that dams large food particles, show a conserved potential to depolymerize many dietary fibers. Symbionts from both life stages have the genomic capacity to recycle nitrogen and synthesize amino acids and B-vitamins. With help of their gut symbionts, including several bacteria likely acquired from the environment, turtle ant larvae may aid colony digestion and contribute to colony-wide nitrogen, B-vitamin and energy budgets. In addition, the conserved nature of the digestive capacities among adult-associated symbionts suggests that nutritional ecology of turtle ant colonies has long been shaped by specialized, behaviorally-transferred gut bacteria with over 45 million years of residency.

 
more » « less
NSF-PAR ID:
10421126
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
FEMS Microbiology Ecology
Volume:
98
Issue:
8
ISSN:
1574-6941
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont—Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)—and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.

     
    more » « less
  2. Abstract

    Across the evolutionary history of insects, the shift from nitrogen-rich carnivore/omnivore diets to nitrogen-poor herbivorous diets was made possible through symbiosis with microbes. The herbivorous turtle antsCephalotespossess a conserved gut microbiome which enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids. This enrichment is assumed to benefit the host, but we do not know to what extent. To gain insights into nitrogen assimilation in the ant cuticle we use gut bacterial manipulation,15N isotopic enrichment, isotope-ratio mass spectrometry, and15N nuclear magnetic resonance spectroscopy to demonstrate that gut bacteria contribute to the formation of proteins, catecholamine cross-linkers, and chitin in the cuticle. This study identifies the cuticular components which are nitrogen-enriched by gut bacteria, highlighting the role of symbionts in insect evolution, and provides a framework for understanding the nitrogen flow from nutrients through bacteria into the insect cuticle.

     
    more » « less
  3. Abstract

    Sustaining beneficial gut symbioses presents a major challenge for animals, including holometabolous insects. Social insects may meet such challenges through partner fidelity, aided by behavioral symbiont transfer and transgenerational inheritance through colony founders. We address such potential through colony‐wide explorations across 13 eusocial, holometabolous insect species in the ant genusCephalotes. Through amplicon sequencing, we show that previously characterized worker microbiomes are conserved in soldier castes, that adult microbiomes exhibit trends of phylosymbiosis, and thatCephalotescospeciate with their most abundant adult‐enriched symbiont. We find, also, that winged queens harbor worker‐like microbiomes prior to colony founding, suggesting vertical inheritance as a means of partner fidelity. Whereas some adult‐abundant symbionts colonize larvae, larval gut microbiomes are uniquely characterized by environmental bacteria from the Enterobacteriales, Lactobacillales, and Actinobacteria. Distributions acrossCephaloteslarvae suggest more than 40 million years of conserved environmental filtering and, thus, a second sustaining mechanism behind an ancient, developmentally partitioned symbiosis.

     
    more » « less
  4. McFall-Ngai, Margaret J. (Ed.)
    ABSTRACT Herbivores must overcome a variety of plant defenses, including coping with plant secondary compounds (PSCs). To help detoxify these defensive chemicals, several insect herbivores are known to harbor gut microbiota with the metabolic capacity to degrade PSCs. Leaf-cutter ants are generalist herbivores, obtaining sustenance from specialized fungus gardens that act as external digestive systems and which degrade the diverse collection of plants foraged by the ants. There is in vitro evidence that certain PSCs harm Leucoagaricus gongylophorus , the fungal cultivar of leaf-cutter ants, suggesting a role for the Proteobacteria -dominant bacterial community present within fungus gardens. In this study, we investigated the ability of symbiotic bacteria present within fungus gardens of leaf-cutter ants to degrade PSCs. We cultured fungus garden bacteria, sequenced the genomes of 42 isolates, and identified genes involved in PSC degradation, including genes encoding cytochrome P450 enzymes and genes in geraniol, cumate, cinnamate, and α-pinene/limonene degradation pathways. Using metatranscriptomic analysis, we showed that some of these degradation genes are expressed in situ . Most of the bacterial isolates grew unhindered in the presence of PSCs and, using gas chromatography-mass spectrometry (GC-MS), we determined that isolates from the genera Bacillus , Burkholderia , Enterobacter , Klebsiella , and Pseudomonas degrade α-pinene, β-caryophyllene, or linalool. Using a headspace sampler, we show that subcolonies of fungus gardens reduced α-pinene and linalool over a 36-h period, while L. gongylophorus strains alone reduced only linalool. Overall, our results reveal that the bacterial communities in fungus gardens play a pivotal role in alleviating the effect of PSCs on the leaf-cutter ant system. IMPORTANCE Leaf-cutter ants are dominant neotropical herbivores capable of deriving energy from a wide range of plant substrates. The success of leaf-cutter ants is largely due to their external gut, composed of key microbial symbionts, specifically, the fungal mutualist L. gongylophorus and a consistent bacterial community. Both symbionts are known to have critical roles in extracting energy from plant material, yet comparatively little is known about their roles in the detoxification of plant secondary compounds. In this study, we assessed if the bacterial communities associated with leaf-cutter ant fungus gardens can degrade harmful plant chemicals. We identify plant secondary compound detoxification in leaf-cutter ant gardens as a process that depends on the degradative potential of both the bacterial community and L. gongylophorus . Our findings suggest that the fungus garden and its associated microbial community influence the generalist foraging abilities of the ants, underscoring the importance of microbial symbionts in plant substrate suitability for herbivores. 
    more » « less
  5. Johnson, Karyn N. (Ed.)
    ABSTRACT A pervasive pest of stored leguminous products, the bean beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) associates with a simple bacterial community during adulthood. Despite its economic importance, little is known about the compositional stability, heritability, localization, and metabolic potential of the bacterial symbionts of C. maculatus . In this study, we applied community profiling using 16S rRNA gene sequencing to reveal a highly conserved bacterial assembly shared between larvae and adults. Dominated by Firmicutes and Proteobacteria , this community is localized extracellularly along the epithelial lining of the bean beetle’s digestive tract. Our analysis revealed that only one species, Staphylococcus gallinarum (phylum Firmicutes ), is shared across all developmental stages. Isolation and whole-genome sequencing of S. gallinarum from the beetle gut yielded a circular chromosome (2.8 Mb) and one plasmid (45 kb). The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine, which is increasingly recognized as an important symbiont-supplemented precursor for cuticle biosynthesis in beetles. A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus . The ontogenic conservation of the gut microbiota in the bean beetle, featuring a “core” community composed of S. gallinarum , may be indicative of an adaptive role for the host. In clarifying symbiont localization and metabolic potential, we further our understanding and study of a costly pest of stored products. IMPORTANCE From supplementing essential nutrients to detoxifying plant secondary metabolites and insecticides, bacterial symbionts are a key source of adaptations for herbivorous insect pests. Despite the pervasiveness and geographical range of the bean beetle Callosobruchus maculatus , the role of microbial symbioses in its natural history remains understudied. Here, we demonstrate that the bean beetle harbors a simple gut bacterial community that is stable throughout development. This community localizes along the insect’s digestive tract and is largely dominated by Staphylococcus gallinarum . In elucidating symbiont metabolic potential, we highlight its possible adaptive significance for a widespread agricultural pest. 
    more » « less