skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Weight Adaptation for Model Predictive Control of Connected and Automated Vehicles in Mixed Traffic with Bayesian Optimization
In this paper, we develop an optimal weight adap- tation strategy of model predictive control (MPC) for connected and automated vehicles (CAVs) in mixed traffic. We model the interaction between a CAV and a human-driven vehicle (HDV) as a simultaneous game and formulate a game-theoretic MPC problem to find a Nash equilibrium of the game. In the MPC problem, the weights in the HDV’s objective function can be learned online using moving horizon inverse reinforcement learning. Using Bayesian optimization, we propose a strategy to optimally adapt the weights in the CAV’s objective function so that the expected true cost when using MPC in simulations can be minimized. We validate the effectiveness of the optimal strategy by numerical simulations of a vehicle crossing example at an unsignalized intersection.  more » « less
Award ID(s):
2149520 2219761
PAR ID:
10421260
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2023 American Control Conference
Page Range / eLocation ID:
1183-1188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speed planning in a vehicle-following scenario can reduce vehicle fuel consumption even under limited traffic preview and in moderate penetration of connected autonomous vehicles (CAVs), but could also lead to colder exhaust temperature, and consequently, less efficient aftertreatment conversion. To investigate this potential trade-off, this paper presents a model predictive controller (MPC) to optimally plan in an energy-conscious way the optimal speed trajectory for a diesel car following a hypothetical lead vehicle that drives through the velocity trace of a federal test procedure. Using this energy-conscious optimal speed plan we investigate different horizons for three objective functions, including minimum acceleration, minimum fuel consumption and minimum power. Then, MPC results are compared to the trajectories obtained by dynamic programming with full knowledge of the drive cycle. As expected, longer previews lead to smoother velocity trajectories that reduce the fuel consumption by 11% when power is the objective function, if the preview is accurate. When the minimum fuel is set as the objective in the MPC, the controller coordinates to operate the engine at more efficient conditions, which increases the fuel saving to 25%. However, the extra fuel saving is shown to be achieved at the expense of high vehicle NOx emissions, since the engine operates at low speeds and high loads, where the output NOx emissions are high, when the aftertreatment catalyst is not hot enough. Finally, it is shown that the minimum power formulation leads to a better trade-off, where fuel economy can be increased without a large penalty on NOx emissions. 
    more » « less
  2. As vehicular communication networks embrace metaverse beyond 5G/6G systems, the rich content update via the least interfered subchannel of the optimal frequency band in a hybrid band vehicle to everything (V2X) setting emerges as a challenging optimization problem. We model this problem as a tradeoff between multi-band VR/AR devices attempting to perform metaverse scenes and environmental updates to metaverse roadside units (MRSUs) while minimizing energy consumption. Due to the computational hardness of this optimization, we formulate an opportunistic band selection problem using a multi-armed bandit (MAB) that provides a good quality solution in real-time without computationally burdening the already stretched augmented/virtual reality (AR/VR) units acting as transmitting nodes. The opportunistic use of scheduling rich content updates at traffic signals and stand-still scenarios maps well with the formulated bandit problem. We propose a Dual-Objective Minimax Optimal Stochastic Strategy (DOMOSS) as a natural solution to this problem. Through extensive computer-based simulations, we demonstrate the effectiveness of our proposal in contrast to baselines and comparable solutions. We also verify the quality of our solution and the convergence of the proposed strategy. 
    more » « less
  3. The main objective of this paper is to establish a framework to study the co-adaptation between humans and automation systems in a haptic shared control framework. We specifically used this framework to design control transfer strategies between humans and automation systems to resolve a conflict when co-steering a semi-automated ground vehicle. The proposed framework contains three main parts. First, we defined a modular structure to separate partner-specific strategies from task-dependent representations and use this structure to learn different co-adaption strategies. In this structure, we assume the human and automation steering commands can be determined by optimizing cost functions. For each agent, the costs are defined as a combination of a set of hand-coded features and vectors of weights. The hand-coded features can be selected to describe task-dependent representations. On the other hand, the weight distributions over these features can be used as a proxy to determine the partner-specific conventions. Second, to leverage the learned co-adaptation strategies, we developed a map connecting different strategies to the outputs of human-automation interactions by employing a collaborative-competitive game concept. Finally, using the map, we designed an adaptable automation system capable of co-adapting to human driver’s strategies. Specifically, we designed an episode-based policy search using the deep deterministic policy gradients technique to determine the optimal weights vector distribution of automation’s cost function. The simulation results demonstrate that the handover strategies designed based on co-adaption between human and automation systems can successfully resolve a conflict and improve the performance of the human automation teaming. 
    more » « less
  4. This paper considers the problem of optimizing the trajectory of an Unmanned Aerial Vehicle (UAV) Base Station (BS). A map is considered, characterized by a traffic intensity of users to be served. The UAV BS must travel from a given initial location at an initial time to a final position within a given duration and serves the traffic on its way. The problem consists in finding the optimal trajectory that minimizes a certain cost depending on the velocity and on the amount of served traffic. The problem is formulated using the framework of Lagrangian mechanics. When the traffic intensity is quadratic (single-phase), we derive closed-form formulas for the optimal trajectory. When the traffic intensity is bi-phase, necessary conditions of optimality are provided and an Alternating Optimization Algorithm is proposed, that returns a trajectory satisfying these conditions. The Algorithm is initialized with a Model Predictive Control (MPC) online algorithm. Numerical results show how the trajectory is improved with respect to the MPC solution. 
    more » « less
  5. null (Ed.)
    Stability and reliability are of the most important concern for isolated microgrid systems that have no support from the utility grid. Interval predictions are often applied to ensure the system stability of isolated microgrids as they cover more uncertainties and robust control can be achieved based on more sufficient information. In this paper, we propose a probabilistic microgrid energy exchange method based on the Model Predictive Control (MPC) approach to make better use of the prediction intervals so that the system stability and cost efficiency of isolated microgrids are improved simultaneously. Appropriate scenarios are selected from the predictions according to the evaluation of future trends and system capacity. In the meantime, a two-stage adaptive reserve strategy is adopted to further utilize the potential of interval predictions and maintain the system security adaptively. Reserves are determined at the optimization stage to prepare some extra capacity for the fluctuations in the renewable generation and load demand at the operation stage based on the aggressive and conservative level of the system, which is automatically updated at each step. The optimal dispatch problem is finally formulated using the mixed-integer linear programming model and the MPC is formulated as an optimization problem with a discount factor introduced to adjust the weights. Case studies show that the proposed method could effectively guarantee the stability of the system and improve economic performance. 
    more » « less