Decoupling the ion motion and segmental relaxation is significant for developing advanced solid polymer electrolytes with high ionic conductivity and high mechanical properties. Our previous work proposed a decoupled ion transport in a novel protein-based solid electrolyte. Herein, we investigate the detailed ion interaction/transport mechanisms through first-principles density functional theory (DFT) calculations in a vacuum space. Specifically, we study the important roles of charged amino acids from proteins. Our results show that the charged amino acids (i.e., Arg and Lys) can strongly lock anions (ClO4−). When locked at a proper position (determined from the molecular structure of amino acids), the anions can provide additional hopping sites and facilitate Li+ transport. The findings are supported from our experiments of two protein solid electrolytes, in which the soy protein (with plenty of charged amino acids) electrolyte shows much higher ionic conductivity and lower activation energy in comparison to the zein (lack of charged amino acids) electrolyte.
more »
« less
Effects of Anions and Protein Structures on Protein‐Based Solid Electrolytes
Abstract Low ionic conductivity is one of the main hurdles for the practical application of advanced all‐solid‐state lithium‐ion batteries. Protein‐based solid electrolytes are recently proposed and can potentially provide both high ionic conductivity and high mechanical properties due to the decoupled ion transport mechanism. In this work, the effects of lithium salts and protein structures on the performance of protein‐based electrolytes through both ab initio density functional theory calculations and experiments are systematically investigated. The results show that the anions can be strongly locked by the charged amino acids, thus providing intermediate hopping sites for lithium‐ion, reducing energy barrier for lithium‐ion transport, and then enhancing the ionic conductivity. These calculations also demonstrate that need to be locked at appropriate positions by properly controlling the protein structures in order to provide bridging effects and facilitate lithium‐ion transport. The findings are consistent with the experimental observations and can provide guidance for design and optimization of protein‐based solid electrolytes.
more »
« less
- Award ID(s):
- 1929236
- PAR ID:
- 10421278
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 8
- Issue:
- 11
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Over the past years, lithium-ion solid-state batteries have demonstrated significant advancements regarding such properties as safety, long-term endurance, and energy density. Solid-state electrolytes based on lithium halides offer new opportunities due to their unique features such as a broad electrochemical stability window, high lithium-ion conductivity, and elasticity at close to melting point temperatures that could enhance lithium-ion transport at interfaces. A comparative study of lithium indium halide (Li3InCl6) electrolytes synthesized through a mechano-thermal method with varying optimization parameters revealed a significant effect of temperature and pressure on lithium-ion transport. An analysis of Electrochemical Impedance Spectroscopy (EIS) data within the temperature range of 25–100 °C revealed that the optimized Li3InCl6 electrolyte reveals high ionic conductivity, reaching 1.0 mS cm−1 at room temperature. Herein, we present the utilization of in situ/operando X-ray Photoelectron Spectroscopy (XPS) and in situ X-ray powder diffraction (XRD) to investigate the temperature-dependent behavior of the Li3InCl6 electrolyte. Confirmed by these methods, significant changes in the Li3InCl6 ionic conductivity at 70 °C were observed due to phase transformation. The observed behavior provides critical information for practical applications of the Li3InCl6 solid-state electrolyte in a broad temperature range, contributing to the enhancement of lithium-ion solid-state batteries through their improved morphology, chemical interactions, and structural integrity.more » « less
-
Hybrid solid electrolytes are composed of organic (polymer) and inorganic (ceramic) ion conducting materials, and are promising options for large-scale production of solid state lithium–metal batteries. Hybrid solid electrolytes containing 15 vol% Al-LLZO demonstrate optimal ionic conductivity properties. Ionic conductivity is shown to decrease at high inorganic loadings. This optimum is most obvious above the melting temperature of polyethylene oxide where the polymer is amorphous. Structural analysis using synchrotron nanotomography reveals that the inorganic particles are highly aggregated. The aggregation size grows with inorganic content and the largest percolating clusters measured for 5 vol%, 15 vol% and 50 vol% were ∼12 μm 3 , 206 μm 3 , and 324 μm 3 , respectively. Enhanced transport in hybrid electrolytes is shown to be due to polymer|particle (Al-LLZO) interactions and ionic conductivity is directly related to the accessible surface area of the inorganic particles within the electrolyte. Ordered and well-dispersed structures are ideal for next generation hybrid solid electrolytes.more » « less
-
Abstract Despite significant interest toward solid‐state electrolytes owing to their superior safety in comparison to liquid‐based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high‐power density batteries. Here, a novel quasi‐solid Li+ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm−2at room temperature. The cycling overpotential is dropped by 75% in comparison to BP‐free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ions around (trifluoromethanesulfonyl)imide (TFSI−) pairs and ethylene‐oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid‐state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long‐life cycling.more » « less
-
Abstract The development of all‐solid‐state Li‐ion batteries requires solid electrolyte materials with many desired properties, such as ionic conductivity, chemical and electrochemical stability, and mechanical durability. Computation‐guided materials design techniques are advantageous in designing and identifying new solid electrolytes that can simultaneously meet these requirements. In this joint computational and experimental study, a new family of fast lithium ion conductors, namely, LiTaSiO5with sphene structure, are successfully identified, synthesized, and demonstrated using a novel computational design strategy. First‐principles computation predicts that Zr‐doped LiTaSiO5sphene materials have fast Li diffusion, good phase stability, and poor electronic conductivity, which are ideal for solid electrolytes. Experiments confirm that Zr‐doped LiTaSiO5sphene structure indeed exhibits encouraging ionic conductivity. The lithium diffusion mechanisms in this material are also investigated, indicating the sphene materials are 3D conductors with facile 1D diffusion along the [101] direction and additional cross‐channel migration. This study demonstrates a novel design strategy of activating fast Li ionic diffusion in lithium sphenes, a new materials family of superionic conductors.more » « less