A new bifurcation from simple eigenvalue theorem is proved for general nonlinear functional equations. It is shown that in this bifurcation scenario, the bifurcating solutions are on a curve which is tangent to the line of trivial solutions, while in typical bifurcations the curve of bifurcating solutions is transversal to the line of trivial ones. The stability of bifurcating solutions can be determined, and examples from partial differential equations are shown to demonstrate such bifurcations.
more »
« less
Global Bifurcation for Corotating and Counter-Rotating Vortex Pairs
Abstract The existence of a local curve of corotating and counter-rotating vortex pairs was proven by Hmidi and Mateu (in Commun Math Phys 350(2):699–747, 2017) via a desingularization of a pair of point vortices. In this paper, we construct a global continuation of these local curves. That is, we consider solutions which are more than a mere perturbation of a trivial solution. Indeed, while the local analysis relies on the study of the linear equation at the trivial solution, the global analysis requires on a deeper understanding of topological properties of the nonlinear problem. For our proof, we adapt the powerful analytic global bifurcation theorem due to Buffoni and Toland to allow for the singularity at the bifurcation point. For both the corotating and the counter-rotating pairs, along the global curve of solutions either the angular fluid velocity vanishes or the two patches self-intersect.
more »
« less
- Award ID(s):
- 2102961
- PAR ID:
- 10421288
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Communications in Mathematical Physics
- Volume:
- 402
- Issue:
- 2
- ISSN:
- 0010-3616
- Page Range / eLocation ID:
- p. 1167-1204
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study equilibrium configurations of double-stranded DNA in a cylindrical viral capsid. The state of the encapsidated DNA consists of a disordered inner core enclosed by an ordered outer region, next to the capsid wall. The DNA configuration is described by a unit helical vector field, tangent to an associated centre curve, passing through properly selected locations. We postulate an expression for the energy of the encapsulated DNA based on that of columnar chromonic liquid crystals. A thorough analysis of the Euler–Lagrange equations yields multiple solutions. We demonstrate that there is a trivial, non-helical solution, together with two solutions with non-zero helicity of opposite sign. Using bifurcation analysis, we derive the conditions for local stability and determine when the preferred coiling state is helical. The bifurcation parameters are the ratio of the twist versus the bend moduli of DNA and the ratio between the sizes of the ordered and the disordered regions.more » « less
-
This paper concerns asymptotic stability, instability, and bifurcation of constant steady state solutions of the parabolic-parabolic and parabolic-elliptic chemotaxis models on metric graphs. We determine a threshold value $$\chi^*>0$$ of the chemotaxis sensitivity parameter that separates the regimes of local asymptotic stability and instability, and, in addition, determine the parameter intervals that facilitate global asymptotic convergence of solutions with positive initial data to constant steady states. Moreover, we provide a sequence of bifurcation points for the chemotaxis sensitivity parameter that yields non-constant steady state solutions. In particular, we show that the first bifurcation point coincides with threshold value $$\chi^*$$ for a generic compact metric graph. Finally, we supply numerical computation of bifurcation points for several graphs.more » « less
-
In this paper, we analyse Turing instability and bifurcations in a host–parasitoid model with nonlocal effect. For a ordinary differential equation model, we provide some preliminary analysis on Hopf bifurcation. For a reaction–diffusion model with local intraspecific prey competition, we first explore the Turing instability of spatially homogeneous steady states. Next, we show that the model can undergo Hopf bifurcation and Turing–Hopf bifurcation, and find that a pair of spatially nonhomogeneous periodic solutions is stable for a(8,0)-mode Turing–Hopf bifurcationand unstable for a(3,0)-mode Turing–Hopf bifurcation. For a reaction–diffusion model with nonlocal intraspecific prey competition, we study the existence of the Hopf bifurcation, double-Hopf bifurcation, Turing bifurcation, and Turing–Hopf bifurcation successively, and find that a spatially nonhomogeneous quasi-periodic solution is unstable for a(0,1)-mode double-Hopf bifurcation. Our results indicate that the model exhibits complex pattern formations, including transient states, monostability, bistability, and tristability. Finally, numerical simulations are provided to illustrate complex dynamics and verify our theoretical results.more » « less
-
Grid-free Monte Carlo methods such aswalk on spherescan be used to solve elliptic partial differential equations without mesh generation or global solves. However, such methods independently estimate the solution at every point, and hence do not take advantage of the high spatial regularity of solutions to elliptic problems. We propose a fast caching strategy which first estimates solution values and derivatives at randomly sampled points along the boundary of the domain (or a local region of interest). These cached values then provide cheap, output-sensitive evaluation of the solution (or its gradient) at interior points, via a boundary integral formulation. Unlike classic boundary integral methods, our caching scheme introduces zero statistical bias and does not require a dense global solve. Moreover we can handle imperfect geometry (e.g., with self-intersections) and detailed boundary/source terms without repairing or resampling the boundary representation. Overall, our scheme is similar in spirit tovirtual point lightmethods from photorealistic rendering: it suppresses the typical salt-and-pepper noise characteristic of independent Monte Carlo estimates, while still retaining the many advantages of Monte Carlo solvers: progressive evaluation, trivial parallelization, geometric robustness,etc.We validate our approach using test problems from visual and geometric computing.more » « less
An official website of the United States government
