skip to main content


Title: Anatomical and biophysical basis for graft incompatibility within the Solanaceae
Abstract

Interspecies grafting is an economically relevant technique that allows beneficial shoot and root combinations from separate species to be combined. One hypothesis for the basis of graft compatibility revolves around taxonomic relatedness. To test how phylogenetic distance affects interspecific graft compatibility within the economically important Solanaceae subfamily, Solanoideae, we characterized the anatomical and biophysical integrity of graft junctions between four species: tomato (Solanum lycopersicum), eggplant (Solanum melongena), pepper (Capsicum annuum), and groundcherry (Physalis pubescens). We analyzed the survival, growth, integrity, and cellular composition of the graft junctions. Utilizing various techniques, we were able to quantitatively assess compatibility among the interspecific grafts. Even though most of our graft combinations could survive, we show that only intrageneric combinations between tomato and eggplant are compatible. Unlike incompatible grafts, the formation of substantial vascular reconnections between tomato and eggplant in the intrageneric heterografts likely contributed to biophysically stable grafts. Furthermore, we identified 10 graft combinations that show delayed incompatibility, providing a useful system to pursue deeper work into graft compatibility. This work provides new evidence that graft compatibility may be limited to intrageneric combinations within the Solanoideae subfamily. Further research amongst additional Solanaceous species can be used to test the extent to which our hypothesis applies to this family.

 
more » « less
NSF-PAR ID:
10421289
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Experimental Botany
ISSN:
0022-0957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Grafting has been adopted for a wide range of crops to enhance productivity and resilience; for example, grafting of Solanaceous crops couples disease-resistant rootstocks with scions that produce high-quality fruit. However, incompatibility severely limits the application of grafting and graft incompatibility remains poorly understood. In grafts, immediate incompatibility results in rapid death, but delayed incompatibility can take months or even years to manifest, creating a significant economic burden for perennial crop production. To gain insight into the genetic mechanisms underlying this phenomenon, we developed a model system using heterografting of tomato (Solanum lycopersicum) and pepper (Capsicum annuum). These grafted plants express signs of anatomical junction failure within the first week of grafting. By generating a detailed timeline for junction formation, we were able to pinpoint the cellular basis for this delayed incompatibility. Furthermore, we inferred gene regulatory networks for compatible self-grafts and incompatible heterografts based on these key anatomical events, which predict core regulators for grafting. Finally, we examined the role of vascular development in graft formation and uncovered SlWOX4 as a potential regulator of graft compatibility. Following this predicted regulator up with functional analysis, we show that Slwox4 homografts fail to form xylem bridges across the junction, demonstrating that indeed, SlWOX4 is essential for vascular reconnection during grafting, and may function as an early indicator of graft failure. 
    more » « less
  2. Summary

    Plants have mechanisms to recognize and reject pollen from other species. Although widespread, these mechanisms are less well understood than the self‐incompatibility (SI) mechanisms plants use to reject pollen from close relatives. Previous studies have shown that some interspecific reproductive barriers (IRBs) are related toSIin the Solanaceae. For example, the pistilSIproteins S‐RNase andHTprotein function in a pistil‐sideIRBthat causes rejection of pollen from self‐compatible (SC) red/orange‐fruited species in the tomato clade. However, S‐RNase‐independentIRBs also clearly contribute to rejecting pollen from these species. We investigated S‐RNase‐independent rejection ofSolanum lycopersicumpollen bySCSolanum pennelliiLA0716,SC.Solanum habrochaitesLA0407, andSCSolanum arcanumLA2157, which lack functional S‐RNase expression. We found that all three accessions expressHTproteins, which previously had been known to function only in conjunction with S‐RNase, and then usedRNAi to test whether they also function in S‐RNase‐independent pollen rejection. SuppressingHTexpression inSCS. pennelliiLA0716 allowsS. lycopersicumpollen tubes to penetrate farther into the pistil inHTsuppressed plants, but not to reach the ovary. In contrast, suppressingHTexpression inSC.Solanum habrochaitesLA0407 and inSCS. arcanumLA2157 allowsS. lycopersicumpollen tubes to penetrate to the ovary and produce hybrids that, otherwise, would be difficult to obtain. Thus,HTproteins are implicated in both S‐RNase‐dependent and S‐RNase‐independent pollen rejection. The results support the view that overall compatibility results from multiple pollen–pistil interactions with additive effects.

     
    more » « less
  3. Societal Impact Statement

    Fleshy fruits provide humans with many flavorful and nutritious crops. Understanding the diversity of these plants is fundamental to managing agriculture and food security in a changing world. This study surveyed fruit trait variation across species of tomato wild relatives and explored associations among color, size, shape, sugars, and acids. These wild tomato species native to South America can be interbred with the economically important cultivated tomato. Beyond its application to tomatoes, deepening our knowledge of how fruit traits evolve together is valuable to crop improvement efforts aimed at breeding more nutritious and appealing varieties of fruits.

    Summary

    Fleshy fruits display a striking diversity of traits, many of which are important for agriculture. The evolutionary drivers of this variation are not well understood, and most studies have relied on variation found in the wild. Few studies have explored this question on a fine‐grained scale with a group of recently diverged species while controlling for environmental effects.

    We developed the tomato clade as a novel system for fruit trait evolution research by presenting the first common garden‐based systematic survey of variation and phylogenetic signal in color, nutrition, and morphology traits across all 13 species of tomato wild relatives (Solanum sect.Lycopersicon). We laid the groundwork for further testing of potential evolutionary drivers by assessing patterns of clustering and correlation among disperser‐relevant fruit traits as well as historical climate variables.

    We found evidence of two distinct clusters of associated fruit traits defined by color, sugar type, and malic acid concentration. We also observed correlations between a fruit's external appearance and internal nutrient content that could function as honest signals to dispersers. Analyses of historical climate and soil variables revealed an association between red/orange/yellow fruits and high annual average temperature.

    Our results establish the tomato clade as a promising system for testing hypotheses on the drivers of divergence behind early‐stage fleshy fruit evolution, particularly selective pressure from frugivores.

     
    more » « less
  4. Premise of the Study

    This investigation establishes the firstDNA‐sequence‐based phylogenetic hypothesis of species relationships in the coca family (Erythroxylaceae) and presents its implications for the intrageneric taxonomy and neotropical biogeography ofErythroxylum. We also identify the closest wild relatives and evolutionary relationships of the cultivated coca taxa.

    Methods

    We focused our phylogenomic inference on the largest taxonomic section in the genusErythroxylum(ArcherythroxylumO.E.Schulz) using concatenation and gene tree reconciliation methods from hybridization‐based target capture of 427 genes.

    Key Results

    We show that neotropicalErythroxylumare monophyletic within the paleotropical lineages, yetArcherythroxylumand all of the other taxonomic sections from which we sampled multiple species lack monophyly. We mapped phytogeographic states onto the tree and found some concordance between these regions and clades. The wild speciesE. gracilipesandE. cataractarumare most closely related to the cultivatedE. cocaandE. novogranatense, but relationships within this “coca” clade remain equivocal.

    Conclusions

    Our results point to the difficulty of morphology‐based intrageneric classification in this clade and highlight the importance of integrative taxonomy in future systematic revisions. We can confidently identifyE. gracilipesandE. cataractarumas the closest wild relatives of the coca taxa, but understanding the domestication history of this crop will require more thorough phylogeographic analysis.

     
    more » « less
  5. Abstract

    The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.

     
    more » « less