skip to main content

Title: Woodland wildfire enables fungal colonization of encroaching Douglas‐fir

Self‐reinforcing differences in fire frequency help closed‐canopy forests, which resist fire, and open woodlands, which naturally burn often, to co‐occur stably at landscape scales. Forest tree seedlings, which could otherwise encroach and overgrow woodlands, are killed by regular fire, yet fire has other effects that may also influence these feedbacks. In particular, many forest trees require symbiotic ectomycorrhizal fungi in order to establish. By restructuring soil fungal communities, fire might affect the availability of symbionts or the potential for symbiont sharing between encroaching trees and woodland vegetation.

To investigate this possibility, we performed a soil bioassay experiment using inoculum from burned and unburned oak woodlands and Douglas‐fir forests. We examined how fire, ecosystem type, and neighboring heterospecific seedlings affect fungal root community assembly of Douglas‐firs and oaks. We asked whether heterospecific seedlings facilitated fungal colonization of seedling roots in non‐native soil, and if so, whether fire influenced this interaction.

External fungal colonization of oak roots was more influenced by fire and ecosystem type than by the presence of a Douglas‐fir, and oaks increased the likelihood that Douglas‐fir roots would be colonized by fungi in oak woodland soil. Yet, fire increased colonization of Douglas‐fir in oak soil, diminishing the otherwise crucial role played by oak facilitation. Fire also strengthened the positive effect of Douglas‐firs on oak root‐associated fungal diversity in Douglas‐fir forest soil.

Prior work shows that fire supports woodland ecosystems by stemming recruitment of encroaching seedlings. Here, we find evidence that it may contrastingly reduce fungal limitation of invasive seedling growth and establishment, otherwise relieved only by facilitation. Future work can investigate how these opposing effects might contribute to the net impact of changes in fire regime on landcover stability.

Read the freePlain Language Summaryfor this article on the Journal blog.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Date Published:
Journal Name:
Functional Ecology
Page Range / eLocation ID:
p. 2181-2193
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ectomycorrhizal tree species may benefit from positive plant–soil feedbacks, where soil environments near adult trees enhance conspecific seedling growth and survival. In tropical monodominant forests, seedling survival is particularly important, as seedling banks help maintain stand‐level dominance over generations. Positive plant–soil feedbacks may be mediated by diverse ectomycorrhizal fungal communities, which improve nutrient acquisition of heavily shaded seedlings. Despite the potential importance of these fungi, little is known about ectomycorrhizal fungal community development on seedlings of tropical monodominant trees. In Guyana, we sequentially monitored percent colonization and species composition of ectomycorrhizal fungi on an even‐age cohort of seedlings of the tropical monodominant treeDicymbe corymbosa(Fabaceae subfamily Detarioideae). Ectomycorrhizal fungi found onDcorymbosaseedlings over a 12‐month period of early development were compared to those of conspecific adults and four other ectomycorrhizal tree species in the region. Species turnover was high (80%) between 6‐ and 12‐month‐old seedlings, though the /russula‐lactarius, /clavulina, and /tomentella‐thelephora lineages were species‐rich on seedlings at all ages. The number of ectomycorrhizal morphotypes per seedling increased with age, but extent of fungal colonization did not. Seedling ectomycorrhizal fungi were shared with sympatric conspecific adults (55%) and, to a lesser extent, regional heterospecific adults (27%), but numerous species were previously unrecorded for Guyana. Over their developmentD. corymbosaseedlings did not rely strictly on adult trees for their mycobionts but appeared to foster unique assemblages of ectomycorrhizal fungi.

    more » « less
  2. Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon. However, the role of annual climate variation and its interaction with long-term climate trends in driving these changes is poorly resolved. Here we examine the relationship between annual climate and postfire tree regeneration of two dominant, low-elevation conifers (ponderosa pine and Douglas-fir) using annually resolved establishment dates from 2,935 destructively sampled trees from 33 wildfires across four regions in the western United States. We show that regeneration had a nonlinear response to annual climate conditions, with distinct thresholds for recruitment based on vapor pressure deficit, soil moisture, and maximum surface temperature. At dry sites across our study region, seasonal to annual climate conditions over the past 20 years have crossed these thresholds, such that conditions have become increasingly unsuitable for regeneration. High fire severity and low seed availability further reduced the probability of postfire regeneration. Together, our results demonstrate that climate change combined with high severity fire is leading to increasingly fewer opportunities for seedlings to establish after wildfires and may lead to ecosystem transitions in low-elevation ponderosa pine and Douglas-fir forests across the western United States.

    more » « less
  3. Abstract

    Pioneer trees require high‐light environments for successful seedling establishment. Consequently, seeds of these species often persist in the soil seed bank (SSB) for periods ranging from several weeks to decades. How they survive despite extensive pressure from seed predators and soil‐borne pathogens remains an intriguing question.

    This study aims to test the hypotheses that decades‐old seeds collected from the SSB in a lowland tropical forest remain viable by (i) escaping infection by fungi, which are major drivers of seed mortality in tropical soils, and/or (ii) maintaining high levels of seed dormancy and seed coat integrity when compared to inviable seeds.

    We collected seeds ofTrema micranthaandZanthoxylum ekmaniiat Barro Colorado Island, Panama, from sites where adult trees previously occurred in the past 30 years. We used carbon dating to measure seed age and characterized seed coat integrity, seed dormancy and fungal communities.

    Viable seeds from the SSB ranged in age from 9 to 30 years forT. micrantha, and 5 to 33 years forZ. ekmanii. We found no evidence that decades‐old seeds maintain high levels of seed dormancy or seed coat integrity. Fungi were rarely detected in fresh seeds (no soil contact), but phylogenetically diverse fungi were detected often in seeds from the SSB. Although fungal infections were more commonly detected in inviable seeds than in viable seeds, a lack of differences in fungal diversity and community composition between viable and inviable seeds suggested that viable seeds are not simply excluding fungal species to survive long periods in the SSB.

    Synthesis.Our findings reveal the importance of a previously understudied aspect of seed survival, where the impact of seed–microbial interactions may be critical to understand long‐term persistence in the SSB.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  4. Abstract

    Greater tree density and forest productivity at the tundra–taiga ecotone (TTE) are expected with climate warming, with potential feedbacks to the climate system. Yet, competition for nitrogen (N) may impact TTE dynamics. Greater tree density will likely increase N demand, while reducing N supply through soil shading and slower decomposition rates. We explored whether characteristics of roots and root‐associated fungi important to N acquisition responded to changes in density at the TTE and were related to above‐ground stand productivity and N cycling.

    We measured rooting depth, uptake of N forms among soil layers and ectomycorrhizal (EcM) colonization and composition along a natural tree density gradient of monodominant larchLarix cajanderiin northeastern Siberia. We tested relationships between larch root and fungal characteristics, above‐ground productivity and stand‐level N cycling parameters.

    Overall, there was preferential uptake of ammonium compared to glycine or nitrate. Nitrogen uptake was greatest in shallow soils of the organic horizon and related to root chemistry, root‐associated fungi and above‐ground N cycling parameters, but the direction of these relationships depended on N form. Uptake of different N forms, rooting depth and EcM colonization and composition were not related to tree density, but fungal composition was correlated with root N chemistry and above‐ground N cycling parameters. In addition to EcM, the abundance of dark septate endophytes and other ascomycetous taxa was positively related to N uptake and above‐ground N cycling parameters.

    Synthesis. There was little impact of tree density on root and fungal parameters related to N acquisition suggesting intraspecific larch competition for N was not amplified with increased density. There was, however, a strong impact of root‐associated fungi on N uptake and stand N dynamics regardless of tree density. Together, this suggests an important role of root‐associated fungi on broadscale patterns of N cycling in TTE larch forests independent of changes in tree density expected with climate warming.

    more » « less
  5. Summary

    Ectomycorrhizal symbiosis is essential for the nutrition of most temperate forest trees and helps regulate the movement of carbon (C) and nitrogen (N) through forested ecosystems. The factors governing the exchange of plant C for fungal N, however, remain obscure.

    Because competition and soil resources may influence ectomycorrhizal resource movement, we performed a 10‐month split‐root microcosm study usingPinus muricataseedlings withThelephora terrestris,Suillus pungens, or no ectomycorrhizal fungus, under two N concentrations in artificial soil. Fungi competed directly with roots and indirectly with each other. We used stable isotope enrichment to track plant photosynthate and fungal N.

    ForT. terrestris, plants received N commensurate with the C given to their fungal partners.Thelephora terrestriswas a superior mutualist under high‐N conditions. ForS. pungens, plant C and fungal N exchange were not coupled. However, in low‐N conditions, plants preferentially allocated C toS. pungensrather thanT. terrestris.

    Our results suggest that ectomycorrhizal resource transfer depends on competitive and nutritional context. Plants can exchange C for fungal N, but coupling of these resources can depend on the fungal species and soil N. Understanding the diversity of fungal strategies, and how they change with environmental context, reveals mechanisms driving this important symbiosis.

    more » « less