skip to main content

Title: Self‐Assembled Microactuators Using Chiral Liquid Crystal Elastomers

Materials that undergo reversible changes in form typically require top‐down processing to program the microstructure of the material. As a result, it is difficult to program microscale, 3D shape‐morphing materials that undergo non‐uniaxial deformations. Here, a simple bottom‐up fabrication approach to prepare bending microactuators is described. Spontaneous self‐assembly of liquid crystal (LC) monomers with controlled chirality within 3D micromold results in a change in molecular orientation across thickness of the microstructure. As a result, heating induces bending in these microactuators. The concentration of chiral dopant is varied to adjust the chirality of the monomer mixture. Liquid crystal elastomer (LCE) microactuators doped with 0.05 wt% of chiral dopant produce needle‐shaped actuators that bend from flat to an angle of 27.2 ± 11.3° at 180 °C. Higher concentrations of chiral dopant lead to actuators with reduced bending, and lower concentrations of chiral dopant lead to actuators with poorly controlled bending. Asymmetric molecular alignment inside 3D structure is confirmed by sectioning actuators. Arrays of microactuators that all bend in the same direction can be fabricated if symmetry of geometry of the microstructure is broken. It is envisioned that the new platform to synthesize microstructures can further be applied in soft robotics and biomedical devices.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of the molecular chirality of chiral additives on the nanostructure of the twist-bend nematic (N TB ) liquid crystal phase with ambidextrous chirality and nanoscale pitch due to spontaneous symmetry breaking is studied. It is found that the ambidextrous nanoscale pitch of the N TB phase increases by 50% due to 3% chiral additive, and the chiral transfer among the biphenyl groups disappears in the N TB * phase. Most significantly, a twist-grain boundary (TGB) type phase is found at c > 1.5 wt% chiral additive concentrations below the usual N* phase and above the non-CD active N TB * phase. In such a TGB type phase, the adjacent blocks of pseudo-layers of the nanoscale pitch rotate across the grain boundaries. 
    more » « less
  2. Abstract

    Induction, transmission, and manipulation of chirality in molecular systems are well known, widely applied concepts. However, our understanding of how chirality of nanoscale entities can be controlled, measured, and transmitted to the environment is considerably lacking behind. Future discoveries of dynamic assemblies engineered from chiral nanomaterials, with a specific focus on shape and size effects, require exact methods to assess transmission and amplification of nanoscale chirality through space. Here we present a remarkably powerful chirality amplification approach by desymmetrization of plasmonic nanoparticles to nanorods. When bound to gold nanorods, a one order of magnitude lower number of chiral molecules induces a tighter helical distortion in the surrounding liquid crystal–a remarkable amplification of chirality through space. The change in helical distortion is consistent with a quantification of the change in overall chirality of the chiral ligand decorated nanomaterials differing in shape and size as calculated from a suitable pseudoscalar chirality indicator.

    more » « less
  3. Abstract

    Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal‐to‐electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium–indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage‐controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed‐loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic‐inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.

    more » « less
  4. Abstract

    In materials that undergo martensitic phase transformation, macroscopic loading often leads to the creation and/or rearrangement of elastic domains. This paper considers an example involving a single-crystal slab made from two martensite variants. When the slab is made to bend, the two variants form a characteristic microstructure that we like to call “twinning with variable volume fraction.” Two 1996 papers by Chopra et al. explored this example using bars made from InTl, providing considerable detail about the microstructures they observed. Here we offer an energy-minimization-based model that is motivated by their account. It uses geometrically linear elasticity, and treats the phase boundaries as sharp interfaces. For simplicity, rather than model the experimental forces and boundary conditions exactly, we consider certain Dirichlet or Neumann boundary conditions whose effect is to require bending. This leads to certain nonlinear (and nonconvex) variational problems that represent the minimization of elastic plus surface energy (and the work done by the load, in the case of a Neumann boundary condition). Our results identify how the minimum value of each variational problem scales with respect to the surface energy density. The results are established by proving upper and lower bounds that scale the same way. The upper bounds are ansatz-based, providing full details about some (nearly) optimal microstructures. The lower bounds are ansatz-free, so they explain why no other arrangement of the two phases could be significantly better.

    more » « less
  5. The ordering of nanoparticles into predetermined configurations is of importance to the design of advanced technologies. Here, we balance the interfacial energy of nanoparticles against the elastic energy of cholesteric liquid crystals to dynamically shape nanoparticle assemblies at a fluid interface. By adjusting the concentration of surfactant that plays the dual role of tuning the degree of nanoparticle hydrophobicity and altering the molecular anchoring of liquid crystals, we pattern nanoparticles at the interface of cholesteric liquid crystal emulsions. In this system, interfacial assembly is tempered by elastic patterns that arise from the geometric frustration of confined cholesterics. Patterns are tunable by varying both surfactant and chiral dopant concentrations. Adjusting the particle hydrophobicity more finely by regulating the surfactant concentration and solution pH further modifies the rigidity of assemblies, giving rise to surprising assembly dynamics dictated by the underlying elasticity of the cholesteric. Because particle assembly occurs at the interface with the desired structures exposed to the surrounding water solution, we demonstrate that particles can be readily cross-linked and manipulated, forming structures that retain their shape under external perturbations. This study serves as a foundation for better understanding inter-nanoparticle interactions at interfaces by tempering their assembly with elasticity and for creating materials with chemical heterogeneity and linear, periodic structures, essential for optical and energy applications. 
    more » « less