skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Concept for a Leaky Wave Antenna Oscillator With Second Order Degeneracy
We exploit a second order exceptional point of degeneracy (EPD) to enhance frequency purity and oscillation stability in oscillators. The EPD we consider in this paper is a regular band edge (RBE) that exists in lossless and gainless periodic waveguides. We present an example of single-ladder oscillator that may act as a leaky wave antenna (LWA). The oscillator we develop has 8 unit-cells that form a resonant cavity and an active element is used to compensate for the losses and start the oscillation. We show that the oscillation frequency is in proximity of the RBE frequency thanks to the second order degeneracy.  more » « less
Award ID(s):
1711975
PAR ID:
10421539
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Published in: 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting
Page Range / eLocation ID:
Montreal, Canada, July 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mann, Sander; Vellucci, Stefano (Ed.)
    Exceptional points of degeneracy (EPD) can enhance the sensitivity of circuits by orders of magnitude. We show various configurations of coupled LC resonators via a gyrator that support EPDs of second and third-order. Each resonator includes a capacitor and inductor with a positive or negative value, and the corresponding EPD frequency could be real or imaginary. When a perturbation occurs in the second-order EPD gyrator-based circuit, we show that there are two real-valued frequencies shifted from the EPD one, following a square root law. This is contrary to what happens in a Parity-Time (PT) symmetric circuits where the two perturbed resonances are complex valued. We show how to get a stable EPD by coupling two unstable resonators, how to get an unstable EPD with an imaginary frequency, and how to get an EPD with a real frequency using an asymmetric gyrator. The relevant Puiseux fractional power series expansion shows the EPD occurrence and the circuit's sensitivity to perturbations. Our findings pave the way for new types of high-sensitive devices that can be used to sense physical, chemical, or biological changes. 
    more » « less
  2. An oscillator made of a periodic waveguide comprising of uniform lossless segments with discrete nonlinear gain and radiating resistive elements prefers to operate at exceptional point of degeneracy (EPD). The steady-state regime is an EPD with π phase shift between unit cells, for various choices of small signal gain of the nonlinear elements and number of unit cells. We demonstrated this fact by monitoring both current and voltage across each nonlinear gain element and finding its effective admittance at the oscillating frequency and checking the degeneracy of the eigenmodes at such point. The EPD studied here is very promising for many applications that incorporate discrete distributed coherent sources and radiation-loss elements. Operating in the vicinity of such special degeneracy conditions may lead to potential performance enhancement in the various microwave, THz and optical systems with distributed gain and radiation, paving the way for a new class of active integrated antenna arrays and radiating laser arrays. 
    more » « less
  3. We demonstrate a new regime of operation to conceive radiating array oscillators. This regime is based on the dispersion engineering of coupled transmission lines (CTLs) utilizing an exceptional point of degeneracy (EPD), which represents the coalescence of multiple eigenmodes. We propose the "gain and loss balance" regime for structures exhibiting significant radiation losses to enable an innovative regime for a class of coherent EPD-based radiating oscillators with stable oscillation frequency. Moreover, this class of radiating oscillators shows an interesting trend of how the oscillation threshold scales with the length of the structure. This EPD concept has potential applications in high power-efficiency oscillators and high-power radiation. 
    more » « less
  4. Mann, Sander; Vellucci, Stefano (Ed.)
    We study the rise of exceptional points of degeneracy (EPD) in various distinct circuit configurations such as gyrator-based coupled resonators, coupled resonators with PT-symmetry, and in a single resonator with a time-varying component. In particular, we analyze their high sensitivity to changes in resistance, capacitance, and inductance and show the high sensitivity of the resonance frequency to perturbations. We also investigate stability and instability conditions for these configurations; for example, the effect of losses in the gyrator-based circuit leads to instability, and it may break the symmetry in the PT-symmetry-based circuit, also resulting in instabilities. Instability in the PT-symmetry circuit is also generated by breaking PT-symmetry when one element (e.g., a capacitor) is perturbed due to sensing. We have turned this instability “inconvenience” to an advantage, and we investigate the effect of nonlinear gain in the PT-symmetry coupled-resonator circuit and how this leads to an oscillator with oscillation frequency very sensitive to perturbation. The circuits studied in this paper have the potential to lead the way for a more efficient generation of high-sensitivity sensors that can detect very small changes in chemical, biological, or physical quantities. 
    more » « less
  5. The first experimental demonstration of an oscillator based on a periodic, resonant microstrip circuit with a degenerate band edge (DBE) is presented. The DBE is a fourth-order exceptional degeneracy of the eigenmodes in a lossless periodic waveguide that is visible in the wavenumber-frequency dispersion diagram, and the periodic microstrip behaves as a frequency selective medium. The presence of the DBE condition and the associated DBE resonance allow for a stable, single-mode oscillation as well as stability with varying the load resistance. 
    more » « less