The availability of genetic data from wild populations limits our understanding of primate evolution and conservation, particularly for small nocturnal species such as lorisiforms (galagos, lorises, angwantibos, and pottos). Emerging methods for recovering genomic DNA from historical museum specimens have been rarely used in primate studies. We aimed to optimize extraction and bioinformatics protocols to maximize the recovery of historical DNA to fill important geographic and taxonomic gaps, improve phylogenetic resolution, and inform conservation of Lorisiform primates. First, we compared the performance of two DNA extraction methods by using 238 specimens up to a hundred years old. We then selected 96 samples with the highest DNA yields for shotgun sequencing. To evaluate the impact of phylogenetic divergence in bioinformatic read mapping, we compared coverage depths when using human and three lorisiform reference mitogenomes. Based on whole genomic data, we performed metagenomics and microbial diversity analyses to assess the composition of potentially exogenous content. Lastly, based on the most geographically and taxonomically comprehensive sampling for the West African lorisiforms to date (19/32 currently recognized species), we performed phylogenetic inference using Maximum Likelihood. The results showed that older samples yield lower DNA concentration, with an optimized phenol-chloroform protocol outperforming a commercial kit. However, both extraction methods generated DNA in sufficient amount and quality for phylogenetic inference. Our reference bias comparisons showed that higher phylogenetic proximity between focal species and reference mitogenome increases coverage depth. The metagenomic analysis found human contamination in only one of 96 samples (1%), whereas ten of 96 (11%) samples showed nonnegligible levels of other exogenous contents, among which are certain blood parasites. We inferred low support for the monophyly of Asian and African Lorisids but confirmed the monophyly and previously suggested relationships among Galagid genera. Lastly, we found evidence of cryptic species diversity within the western dwarf galagos (genus Galagoides). Taken together, these results attest to the enormous potential of museomics to advance our understanding of galago evolution, ecology, and conservation, an approach that can be extended to other primate clades.
more »
« less
Molecular Phylogenetic Relationships and Unveiling Novel Genetic Diversity among Slow and Pygmy Lorises, including Resurrection of Xanthonycticebus intermedius
Genetic analysis of historical museum collections presents an opportunity to clarify the evolutionary history of understudied primate groups, improve taxonomic inferences, and inform conservation efforts. Among the most understudied primate groups, slow and pygmy lorises (genera Nycticebus and Xanthonycticebus) are nocturnal strepsirrhines found in South and Southeast Asia. Previous molecular studies have supported five species, but studies using morphological data suggest the existence of at least nine species. We sequenced four mitochondrial loci, CO1, cytb, d-loop, and ND4, for a total of 3324 aligned characters per sample from 41 historical museum specimens for the most comprehensive geographic coverage to date for these genera. We then combined these sequences with a larger dataset composed of samples collected in Vietnam as well as previously published sequences (total sample size N = 62). We inferred phylogenetic relationships using Bayesian inference and maximum likelihood methods based on data from each locus and on concatenated sequences. We also inferred divergence dates for the most recent common ancestors of major lineages using a BEAST analysis. Consistent with previous studies, we found support for Xanthonycticebus pygmaeus as a basal taxon to the others in the group. We also confirmed the separation between lineages of X. pygmaeus from northern Vietnam/Laos/China and southern Vietnam/Cambodia and included a taxonomic revision recognizing a second taxon of pygmy loris, X. intermedius. Our results found support for multiple reciprocally monophyletic taxa within Borneo and possibly Java. The study will help inform conservation management of these trade-targeted animals as part of a genetic reference database for determining the taxonomic unit and provenance of slow and pygmy lorises confiscated from illegal wildlife trade activities.
more »
« less
- PAR ID:
- 10421628
- Date Published:
- Journal Name:
- Genes
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2073-4425
- Page Range / eLocation ID:
- 643
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Subterranean estuaries are coastal ecosystems characterized by vertically stratified groundwater. The biota within these ecosystems is relatively understudied due to the inherent difficulty of accessing such extreme environments. The fauna inhabiting these ecosystems is considered vulnerable to extinction, and the presence of cryptic species has major implications for research and conservation efforts. Most species lack molecular data; however, the evaluation of genetic data for some taxa has revealed that undocumented species are common. This study employs molecular species delimitation methods and DNA barcoding through the analysis of publicly and newly generated sequences, including individuals from type localities and non-crustacean phyla; the latter are typically overlooked in biodiversity assessments of subterranean estuaries. We analysed 376 cytochrome c oxidase subunit I (COI) gene sequences and 154 16S rRNA gene sequences. The COI sequences represented 32% of previously described species and 50% of stygobiont species from the Yucatan Peninsula and Cozumel Island, while sequences of the 16S rRNA represented 14% of described species and 22% of stygobionts. Our results revealed cryptic genetic lineages and taxonomic misidentification of species. As several species from these ecosystems are recognized as endangered, the use of molecular approaches will improve biodiversity estimates and highlight overlooked cryptic lineages in need of evaluation of conservation status.more » « less
-
null (Ed.)We report on the first molecular estimates of phylogenetic relationships of Brachymeles dalawangdaliri (Scincidae) and Pseudogekko isapa (Gekkonidae), and present new data on phenotypic variation in these two poorly known taxa, endemic to the Romblon Island Group of the central Philippines. Because both species were recently described on the basis of few, relatively older, museum specimens collected in the early 1970s (when preservation of genetic material was not yet standard practice in biodiversity field inventories), neither taxon has ever been included in modern molecular phylogenetic analyses. Likewise, because the original type series for each species consisted of only a few specimens, biologists have been unable to assess standard morphological variation in either taxon, or statistically assess the importance of characters contributing to their diagnoses and identification. Here we ameliorate both historical shortfalls. First, our new genetic data allowed us to perform novel molecular phylogenetic analyses aimed at elucidating the evolutionary relationships of these lineages; secondly, with population level phenotypic data, from the first statistical sample collected for either species, and including adults of both sexes. We reaffirm the distinctiveness of both named taxa as valid species, amend their diagnoses to facilitate the recognition of both, distinguish them from congeners, and consider the biogeographic affinities of both lineages. Our contribution emphasizes the conservation significance of Sibuyan Island’s Mt. Guiting-Guiting Natural Park, the diverse, idiosyncratic biogeographic histories of its variably-assembled, highly endemic reptile fauna, and the critical importance of multiple, repeated, survey–resurvey studies for understanding forest community species composition and the evolutionary history of Philippine biodiversity.more » « less
-
Carraway, Leslie (Ed.)Abstract Sagebrush-steppe ecosystems are one of the most imperiled ecosystems in North America and many of the species that rely on these habitats are of great conservation concern. Pygmy rabbits (Brachylagus idahoensis) are one of these species. They rely on sagebrush year-round for food and cover, and are understudied across their range in the intermountain west due in part to their recalcitrance to standard capture techniques. Identifying an efficient and minimally biased trapping method therefore is a critical first step in learning more about this species. We assessed how trap orientation and weather characteristics influenced trap success for Tomahawk traps placed in and around pygmy rabbit burrows by carrying out trapping surveys at 16 occupied pygmy rabbit sites across the Great Basin from 2016 to 2018. We found that pygmy rabbits had a greater probability of being captured in traps with the open end facing away from burrow entrances. Pygmy rabbits also were more likely to be captured on clear days (0–5% cloud cover) and during periods of cooler temperatures during summer months (June–August). We found no evidence that sex or age ratios differed, or that individuals differed meaningfully, in their preference for certain trap orientations. To increase trap success for pygmy rabbits, we suggest maximizing trapping effort during summer months, at dawn, and maximizing the proportion of Tomahawk traps facing away from burrow entrances. We anticipate that our monitoring protocol will enable more effective research into the ecology and conservation of this cryptic and potentially imperiled species.more » « less
-
Wilkerson, Richard (Ed.)Abstract The Philopterus Complex includes several lineages of lice that occur on birds. The complex includes the genera Philopterus (Nitzsch, 1818; Psocodea: Philopteridae), Philopteroides (Mey, 2004; Psocodea: Philopteridae), and many other lineages that have sometimes been regarded as separate genera. Only a few studies have investigated the phylogeny of this complex, all of which are based on morphological data. Here we evaluate the utility of nuclear and mitochondrial loci for recovering the phylogeny within this group. We obtained phylogenetic trees from 39 samples of the Philopterus Complex (Psocodea: Philopteridae), using sequences of two nuclear (hyp and TMEDE6) and one mitochondrial (COI) marker. We evaluated trees derived from these genes individually as well as from concatenated sequences. All trees show 20 clearly demarcated taxa (i.e., putative species) divided into five well-supported clades. Percent sequence divergence between putative species (~5–30%) for the COI gene tended to be much higher than those for the nuclear genes (~1–15%), as expected. In cases where species are described, the lineages identified based on molecular divergence correspond to morphologically defined species. In some cases, species that are host generalists exhibit additional underlying genetic variation and such cases need to be explored by further future taxonomic revisions of the Philopterus Complex.more » « less
An official website of the United States government

