We experimentally demonstrate a compact on-chip narrowband Fourier Transform spectrometer (FTS) based on spatially heterodyned array of loop-terminated Mach-Zehnder interferometers (LT-MZIs) in a foundry fabricated silicon-on-insulator (SOI) platform for chip-integrated sensing applications. We demonstrate that LT-MZIs with the same progressive geometric path length difference between the spatially heterodyned arrayed interferometer arms, as in Mach-Zehnder interferometers (MZIs), double the optical phase delay and thus double the wavelength resolution compared to MZIs. Our proof-of-concept device demonstrates one method to address the bandwidth-resolution-compactness tradeoff inherent in on-chip FTSs. The resolution enhancement is significant for optical sensing applications in biosensing and chemical sensing requiring single digit picometers resolution within a narrow wavelength bandwidth in compact on-chip form factors. We discuss the challenges arising from fabrication imperfections in spatially heterodyned FTS in foundry fabricated chips. We propose a method to compensate for phase errors arising from fabrication imperfections within a narrow wavelength bandwidth in the FTS using the refractive index changes in the amorphous to crystalline phase transformations of phase change materials (PCMs), which would enable zero active power consumption during on-chip narrowband FTS operation.
more »
« less
A compact Michelson interferometer based on-chip Fourier transform spectrometer
We experimentally demonstrate a compact Fourier Transform on-chip spectrometer based on spatially heterodyned array of Michelson interferometers (MIs) in a silicon-on-insulator (SOI) platform. We demonstrate that with the same progressive geometric path length difference between the spatially heterodyned arrayed interferometer arms, MIs double the optical phase delays and thus double the wavelength resolution (δλ=0.8nm) compared to Mach-Zehnder interferometers (MZIs) (δλ=1.6nm). Our proof-of-concept device demonstrates one method to address the bandwidth-resolution tradeoff inherent in on-chip FTIRs, which gains in significance for optical sensing applications requiring single digit picometers resolution in compact on-chip form factors
more »
« less
- Award ID(s):
- 2210707
- PAR ID:
- 10421759
- Editor(s):
- Crocombe, Richard A.; Profeta, Luisa T.
- Publisher / Repository:
- SPIE
- Date Published:
- ISBN:
- 9781510661462
- Format(s):
- Medium: X
- Location:
- Orlando, United States
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An ultra‐high resolution Fourier transform spectrometer (FTS) realized in silicon photonic platform that can operate with broad band, narrow band as well as a combination of broad band and narrow band signals is reported. The ultra‐high resolution of the spectrometer is achieved by exploiting multiple techniques: a Michelson interferometer (MI) structure to increase the optical path delay (OPD), a hybrid waveguide design to reduce insertion loss, an optimized heater and air trenches to achieve higher thermal efficiency. Moreover, to further increase the OPD of the spectrometer to increase its resolution, a novel multiple interferometers approach is employed which combines balanced MI withNstatically imbalanced MIs, thereby increasing the OPD of a single MI by factor ofN+ 1. An FTS spectrometer consisting ofN= 2 such MIs is fabricated and experimentally characterized using unknown broad bandwidth input signal spectra of about 180 nm centered around 1550 nm, a narrow line laser input signal, and a combination of broad and narrow band signals demonstrating spectral resolution of about 0.16 nm.more » « less
-
Abstract The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics and metasurface optics. In this work, we combine these two technologies using flip-chip bonding and demonstrate an integrated optical architecture for realizing a compact strontium atomic clock. Our planar design includes twelve beams in two co-aligned magneto-optical traps. These beams are directed above the chip to intersect at a central location with diameters as large as 1 cm. Our design also includes two co-propagating beams at lattice and clock wavelengths. These beams emit collinearly and vertically to probe the center of the magneto-optical trap, where they will have diameters of ≈100 µm. With these devices we demonstrate that our integrated photonic platform is scalable to an arbitrary number of beams, each with different wavelengths, geometries, and polarizations.more » « less
-
Integrated photonics provides a powerful approach for developing compact, stable, and scalable architectures for the generation, manipulation, and detection of quantum states of light. To this end, several material platforms are being developed in parallel, each providing its specific assets, and hybridization techniques to combine their strengths are available. This review focuses on AlGaAs, a III–V semiconductor platform combining a mature fabrication technology, direct band-gap compliant with electrical injection, low-loss operation, large electro-optic effect, and compatibility with superconducting detectors for on-chip detection. We detail recent implementations of room-temperature sources of quantum light based on the high second- and third-order optical nonlinearities of the material, as well as photonic circuits embedding various functionalities ranging from polarizing beamsplitters to Mach–Zehnder interferometers, modulators, and tunable filters. We then present several realizations of quantum state engineering enabled by these recent advances and discuss open perspectives and remaining challenges in the field of integrated quantum photonics with AlGaAs.more » « less
-
Optical Coherence Tomography (OCT) is limited by cost and size. We've developed a compact, chip-integrated OCT system with a spectrometer, delay line, and beam scanning. It features a 1310nm central wavelength, 100nm bandwidth, 0.0977nm resolution, 108.45dB sensitivity, and 8.8µm axial resolution.more » « less
An official website of the United States government

