Characterizing the anchoring properties of smectic liquid crystals (LCs) in contact with bacterial solutions is crucial for developing biosensing platforms. In this study, we investigate the anchoring properties of a smectic LC when exposed to Bacillus subtilis and Escherichia coli bacterial suspensions using interfaces with known anchoring properties. By monitoring the optical response of the smectic film, we successfully distinguish different types of bacteria, leveraging the distinct changes in the LC’s response. Through a comprehensive analysis of the interactions between bacterial proteins and the smectic interface, we elucidate the potential underlying mechanisms responsible for these optical changes. Additionally, we introduce the utilization of topological defects, the focal conic domains (FCDs), at the smectic interface as an indicative measure of the bacterial concentration. Our findings contribute to the understanding of bacteria–LC interactions and demonstrate the significant potential of smectic LCs and their defects for biosensing applications, paving the way for advancements in pathogen detection and protein-based sensing.
more »
« less
Focal conic flowers, dislocation rings, and undulation textures in smectic liquid crystal Janus droplets
Liquid crystalline phases of matter often exhibit visually stunning patterns or textures. Mostly, these liquid crystal (LC) configurations are uniquely determined by bulk LC elasticity, surface anchoring conditions, and confinement geometry. Here, we experimentally explore defect textures of the smectic LC phase in unique confining geometries with variable curvature. We show that a complex range of director configurations can arise from a single system, depending on sample processing procedures. Specifically, we report on LC textures in Janus drops comprised of silicone oil and 8CB in its smectic-A LC phase. The Janus droplets were made in aqueous suspension using solvent-induced phase separation. After drop creation, smectic layers form in the LC compartment, but their self-assembly is frustrated by the need to accommodate both the bowl-shaped cavity geometry and homeotropic (perpendicular) anchoring conditions at boundaries. A variety of stable and metastable smectic textures arise, including focal conic domains, dislocation rings, and undulations. We experimentally characterize their stabilities and follow their spatiotemporal evolution. Overall, a range of fabrication kinetics produce very different intermediate and final states. The observations elucidate assembly mechanisms and suggest new routes for fabrication of complex soft material structures in Janus drops and other confinement geometries.
more »
« less
- Award ID(s):
- 2003659
- PAR ID:
- 10421912
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 18
- Issue:
- 23
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 4360 to 4371
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Self-assembly of amphiphilic molecules is an important phenomenon attracting a broad range of research. In this work, we study the self-assembly of KTOF4 sphere–rod amphiphilic molecules in mixed water–dioxane solvents. The molecules are of a T-shaped geometry, comprised of a hydrophilic spherical Keggin-type cluster attached by a flexible bridge to the center of a hydrophobic rod-like oligodialkylfluorene (OF), which consists of four OF units. Transmission electron microscopy (TEM) uncovers self-assembled spherical structures of KTOF4 in dilute solutions. These spheres are filled with smectic-like layers of KTOF4 separated by layers of the solution. There are two types of layer packings: (i) concentric spheres and (ii) flat layers. The concentric spheres form when the dioxane volume fraction in the solution is 35–50 vol%. The flat layers are formed when the dioxane volume fraction is either below (20 and 30 vol%.) or above (55 and 60 vol%.) the indicated range. The layered structures show no in-plane orientational order and thus resemble thermotropic smectic A liquid crystals and their lyotropic analogs. The layered packings reveal edge and screw dislocations. Evaporation of the solvent produces a bulk birefringent liquid crystal phase with textures resembling the ones of uniaxial nematic liquid crystals. These findings demonstrate that sphere–rod molecules produce a variety of self-assembled structures that are controlled by the solvent properties.more » « less
-
We study theoretically and numerically chirality and saddle-splay elastic constant (K_24) enabled stability of multiple-twist-like nematic liquid crystal (LC) structures in cylindrical confinement. We focus on the so-called radially-z-twisted (RZT) and radially-twisted (RT) configurations, which simultaneously exhibit twists in different spatial directions. We express free energies of the structures in terms of dimensionless wave vectors, which characterise the structures and play the role of order parameters. The impact of different confinement anchoring conditions is explored. A simple Landau-type analysis provides insight into how different model parameters influence the stability of structures. We determine conditions for which the structures are stable in chiral and also nonchiral LCs. In particular, we find that the RZT structure could exhibit macroscopic chirality inversion on varying the relevant parameters. This phenomenon could be exploited for measurements of K_24.more » « less
-
Khoo, Iam Choon (Ed.)We explore the structures and confinement-induced edge dislocations in Grandjean-Cano wedge cells filled with the recently discovered chiral ferroelectric nematic (N_F^*) and chiral antiferroelectric smectic-Z 〖(SmZ〗_A^*). The chiral mixture is formed by DIO mesogen doped with a chiral additive. Wedge cells with parallel and antiparallel rubbing at the opposite plates show quantitatively different structures which is attributed to the polar in-plane anchoring of the spontaneous polarization at the rubbed substrates. The helical pitch shows a non-monotonous temperature dependence upon cooling, increasing as the temperature is lowered to the N^*-SmZ_A^* phase transition. The SmZ_A^* formed from an untwisted N^* in the thin portion of the wedge shows a bookshelf (BK) geometry, whereas the twisted N^* transforms into a twisted planar (PA) SmZ_A^* structure. In the N_F^* phase, the untwisted N^* becomes twisted in a wedge with antiparallel assembly of plates and monodomain in wedges with parallel assembly. The twisted regions of N_F^* show only one type of Grandjean zones separated by thick edge dislocations with Burgers vector b=P; the neighboring regions differ by 2π- twist.more » « less
-
We examine the equilibrium configurations of a nematic liquid crystal with an immersed body in two dimensions. A complex variables formulation provides a means for finding analytical solutions in the case of strong anchoring. Local tractions, forces and torques on the body are discussed in a general setting. For weak (finite) anchoring strengths, an effective boundary technique is proposed which is used to determine asymptotic solutions. The energy-minimizing locations of topological defects on the body surface are also discussed. A number of examples are provided, including circular and triangular bodies, and a Janus particle with hybrid anchoring conditions. Analogies to classical results in fluid dynamics are identified, including d'Alembert's paradox, Stokes’ paradox and the Kutta condition for circulation selection.more » « less
An official website of the United States government

