skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying gravity waves launched by the Hunga Tonga–Hunga Ha′apai volcanic eruption in mesosphere/lower-thermosphere winds derived from CONDOR and the Nordic Meteor Radar Cluster
Abstract. The Hunga Tonga–Hunga Ha′apai volcano eruption was a unique event that caused many atmospheric phenomena around the globe. In this study, we investigate the atmospheric gravity waves in the mesosphere/lower-thermosphere (MLT) launched by the volcanic explosion in the Pacific, leveraging multistatic meteor radar observations from the Chilean Observation Network De Meteor Radars (CONDOR) and the Nordic Meteor Radar Cluster in Fennoscandia. MLT winds are computed using a recently developed 3DVAR+DIV algorithm. We found eastward- and westward-traveling gravity waves in the CONDOR zonal and meridional wind measurements, which arrived 12 and 48 h after the eruption, and we found one in the Nordic Meteor Radar Cluster that arrived 27.5 h after the volcanic detonation. We obtained observed phase speeds for the eastward great circle path at both locations of about 250 m s−1, and they were 170–150 m s−1 for the opposite propagation direction. The intrinsic phase speed was estimated to be 200–212 m s−1. Furthermore, we identified a potential lamb wave signature in the MLT winds using 5 min resolved 3DVAR+DIV retrievals.  more » « less
Award ID(s):
1828589
PAR ID:
10422059
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Annales Geophysicae
Volume:
41
Issue:
1
ISSN:
1432-0576
Page Range / eLocation ID:
197 to 208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Hunga Tonga–Hunga Ha′apai volcano erupted on 15 January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanogenic gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic general Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward-propagating gravity wave packet with an observed phase speed of 240 ± 5.7 m s−1 and a westward-propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m s−1. We identified these waves in HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 and 162.2 ± 6.1 m s−1 for the eastward the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption, this affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 min of the nominal value of 15 January 2022 04:15 UTC, and we localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano, confirming our estimates to be realistic. 
    more » « less
  2. Abstract. Meteor radars have become widely used instruments to study atmospheric dynamics, particularly in the 70 to 110 km altitude region. Thesesystems have been proven to provide reliable and continuous measurements of horizontal winds in the mesosphere and lower thermosphere. Recently,there have been many attempts to utilize specular and/or transverse scatter meteor measurements to estimate vertical winds and vertical windvariability. In this study we investigate potential biases in vertical wind estimation that are intrinsic to the meteor radar observation geometryand scattering mechanism, and we introduce a mathematical debiasing process to mitigate them. This process makes use of a spatiotemporal Laplacefilter, which is based on a generalized Tikhonov regularization. Vertical winds obtained from this retrieval algorithm are compared to UA-ICON modeldata. This comparison reveals good agreement in the statistical moments of the vertical velocity distributions. Furthermore, we present the firstobservational indications of a forward scatter wind bias. It appears to be caused by the scattering center's apparent motion along the meteortrajectory when the meteoric plasma column is drifted by the wind. The hypothesis is tested by a radiant mapping of two meteor showers. Finally, weintroduce a new retrieval algorithm providing a physically and mathematically sound solution to derive vertical winds and wind variability frommultistatic meteor radar networks such as the Nordic Meteor Radar Cluster (NORDIC) and the Chilean Observation Network De meteOr Radars(CONDOR). The new retrieval is called 3DVAR+DIV and includes additional diagnostics such as the horizontal divergence and relative vorticity toensure a physically consistent solution for all 3D winds in spatially resolved domains. Based on this new algorithm we obtained vertical velocitiesin the range of w = ± 1–2 m s−1 for most of the analyzed data during 2 years of collection, which is consistent with the values reportedfrom general circulation models (GCMs) for this timescale and spatial resolution. 
    more » « less
  3. Abstract Utilizing multistatic specular meteor radar (MSMR) observations, this study delves into global aspects of wind perturbations in the mesosphere and lower thermosphere (MLT) from the unprecedented 2022 eruption of the Hunga Tonga‐Hunga Ha'apai (HTHH) submarine volcano. The combination of MSMR observations from different viewing angles over South America and Europe, and the decomposition of the horizontal wind in components along and transversal to the HTHH eruption's epicenter direction allow an unambiguous detection and identification of MLT perturbations related to the eruption. The performance of this decomposition is evaluated using Whole Atmosphere Community Climate Model with thermosphere/ionosphere extension (WACCM‐X) simulations of the event. The approach shows that indeed the HTHH eruption signals are clearly identified, and other signals can be easily discarded. The winds in this decomposition display dominant Eastward soliton‐like perturbations observed as far as 25,000 km from HTHH, and propagating at 242 m/s. A weaker perturbation observed only over Europe propagates faster (but slower than 300 m/s) in the Westward direction. These results suggest that we might be observing the so‐called Pekeris mode, also consistent with theL1pseudomode, reproduced by WACCM‐X simulations at MLT altitudes. They also rule out the previous hypothesis connecting the observations in South America to the Tsunami associated with the eruption because these perturbations are observed over Europe as well. Despite the progress, theL0pseudomode in the MLT reproduced by WACCM‐X remains elusive to observations. 
    more » « less
  4. Abstract. The eruption of the Hunga Tonga-Hunga Ha'apai volcano on 15 January 2022 provided a rare opportunity to understand global tsunamiimpacts of explosive volcanism and to evaluate future hazards, includingdangers from “volcanic meteotsunamis” (VMTs) induced by the atmosphericshock waves that followed the eruption. The propagation of the volcanic andmarine tsunamis was analyzed using globally distributed 1 min measurementsof air pressure and water level (WL) (from both tide gauges and deep-waterbuoys). The marine tsunami propagated primarily throughout the Pacific,reaching nearly 2 m at some locations, though most Pacific locationsrecorded maximums lower than 1 m. However, the VMT resulting from theatmospheric shock wave arrived before the marine tsunami and propagatedglobally, producing water level perturbations in the Indian Ocean, theMediterranean, and the Caribbean. The resulting water level response of manyPacific Rim gauges was amplified, likely related to wave interaction withbathymetry. The meteotsunami repeatedly boosted tsunami wave energy as itcircled the planet several times. In some locations, the VMT was amplifiedby as much as 35-fold relative to the inverse barometer due to near-Proudmanresonance and topographic effects. Thus, a meteotsunami from a largereruption (such as the Krakatoa eruption of 1883) could yield atmosphericpressure changes of 10 to 30 mb, yielding a 3–10 m near-field tsunami thatwould occur in advance of (usually) larger marine tsunami waves, posingadditional hazards to local populations. Present tsunami warning systems donot consider this threat. 
    more » « less
  5. The Chilean Observation Network De Meteor Radars (CONDOR) commenced deployment in June 2019 and became fully operational in February 2020. It is a multi-static meteor radar system consisting of three ∼ 1° latitudinally separated stations. The main (central) station is located at the Andes Lidar Observatory (ALO; 30.25° S, 70.74° W) and is used for both transmission and reception. The two remote sites are located to the north and south and are used for reception only. The southern station is located at the Southern Cross Observatory (SCO; 31.20° S, 71.00° W), and the northern station is located at the Las Campanas Observatory (LCO; 29.02° S, 70.69° W). The successful deployment and maintenance of CONDOR provide 24/7 measurements of horizontal winds in the mesosphere and lower thermosphere (MLT) and permit the retrieval of spatially resolved horizontal winds and vertical winds. This is possible because of the high meteor detection rates. Over 30 000 quality-controlled underdense meteor echoes are detected at the ALO site each day, and in total ∼ 88 000 events are detected each day over the three sites. In this paper, we present the configuration of the CONDOR system and discuss the validation and initial results of its data products. The motivations of deploying the CONDOR system also include combining measurements from other co-located ground-based instruments at the ALO site, which provide uniquely cross-validated and cross-scale observations of the MLT dynamics with multiple scientific goals. 
    more » « less