Abstract Enzymatic DNA amplification‐based approaches involving intercalating DNA‐binding fluorescent dyes and expensive optical detectors are the gold standard for nucleic acid detection. As components of a simplified and miniaturized system, conventional silicon‐based ion sensitive field effect transistors (ISFETs) that measure a decrease in pH due to the generation of pyrophosphates during DNA amplification have been previously reported. In this article, Bst polymerase in a loop‐mediated isothermal amplification (LAMP) reaction combined with target‐specific primers and crumpled graphene field effect transistors (gFETs) to electrically detect amplification by sensing the reduction in primers is used. Graphene is known to adsorb single‐stranded DNA due to noncovalent π–π bonds, but not double‐stranded DNA. This approach does not require any surface functionalization and allows the detection of primer concentrations at the endpoint of reactions. As recently demonstrated, the crumpled gFET over the conventional flat gFET sensors due to their superior sensitivity is chosen. The endpoint of amplification reaction with starting concentrations down to 8 × 10−21min 90 min including the time of amplification and detection is detected. With its high sensitivity and small footprint, this platform will help bring complex lab‐based diagnostic and genotyping amplification assays to the point‐of‐care.
more »
« less
Positive feedback drives a secondary nonlinear product burst during a biphasic DNA amplification reaction
Isothermal DNA amplification reactions are used in a broad variety of applications, from diagnostic assays to DNA circuits, with greater speed and less complexity than established PCR technologies. We recently reported a unique, high gain, biphasic isothermal DNA amplification reaction, called the Ultrasensitive DNA Amplification Reaction (UDAR). Here we present a detailed analysis of the UDAR reaction pathways that initiates with a first phase followed by a nonlinear product burst, which is caused by an autocatalytic secondary reaction. The experimental reaction output was reproduced using an ordinary differential equation model based on detailed reaction mechanisms. This model provides insight on the relative importance of each reaction mechanism during both phases, which could aid in the design of product output during DNA amplification reactions.
more »
« less
- Award ID(s):
- 1847245
- PAR ID:
- 10422060
- Date Published:
- Journal Name:
- The Analyst
- Volume:
- 147
- Issue:
- 20
- ISSN:
- 0003-2654
- Page Range / eLocation ID:
- 4450 to 4461
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources.more » « less
-
INgen: Intracellular Genomic DNA Amplification for Downstream Applications in Sequencing and SortingAbstract Here, we introduce intracellular genomic amplification (INgen), a method that harnesses the cell membrane as a natural reaction chamber for DNA amplification, enabling downstream sequencing and cell sorting. Unlike traditional single-cell techniques, INgen utilizes a strand-displacing, isothermal polymerase to amplify DNAwithinfixed, permeabilized cells while maintaining the cell’s structural integrity. This approach overcomes challenges associated with both typical single-cell DNA sequencing and hindrances encountered when previously attempting to sequence genetic material from fixed microbial cells, allowing amplification of genomic regions up to 100 kb and sequencing of whole genomes from diverse cell types, includingS. cerevisiae, B. subtilis, andE. coli. Additionally, INgen can be adapted for targeted DNA enrichment using biotinylated primers and for fluorescence-based cell sorting.more » « less
-
In particle-based stochastic reaction–diffusion models, reaction rates and placement kernels are used to decide the probability per time a reaction can occur between reactant particles and to decide where product particles should be placed. When choosing kernels to use in reversible reactions, a key constraint is to ensure that detailed balance of spatial reaction fluxes holds at all points at equilibrium. In this work, we formulate a general partial-integral differential equation model that encompasses several of the commonly used contact reactivity (e.g., Smoluchowski-Collins-Kimball) and volume reactivity (e.g., Doi) particle models. From these equations, we derive a detailed balance condition for the reversible A + B ⇆ C reaction. In bounded domains with no-flux boundary conditions, when choosing unbinding kernels consistent with several commonly used binding kernels, we show that preserving detailed balance of spatial reaction fluxes at all points requires spatially varying unbinding rate functions near the domain boundary. Brownian dynamics simulation algorithms can realize such varying rates through ignoring domain boundaries during unbinding and rejecting unbinding events that result in product particles being placed outside the domain.more » « less
-
Information technologies enable programmers and engineers to design and synthesize systems of startling complexity that nonetheless behave as intended. This mastery of complexity is made possible by a hierarchy of formal abstractions that span from high-level programming languages down to low-level implementation specifications, with rigorous connections between the levels. DNA nanotechnology presents us with a new molecular information technology whose potential has not yet been fully unlocked in this way. Developing an effective hierarchy of abstractions may be critical for increasing the complexity of programmable DNA systems. Here, we build on prior practice to provide a new formalization of ‘domain-level’ representations of DNA strand displacement systems that has a natural connection to nucleic acid biophysics while still being suitable for formal analysis. Enumeration of unimolecular and bimolecular reactions provides a semantics for programmable molecular interactions, with kinetics given by an approximate biophysical model. Reaction condensation provides a tractable simplification of the detailed reactions that respects overall kinetic properties. The applicability and accuracy of the model is evaluated across a wide range of engineered DNA strand displacement systems. Thus, our work can serve as an interface between lower-level DNA models that operate at the nucleotide sequence level, and high-level chemical reaction network models that operate at the level of interactions between abstract species.more » « less
An official website of the United States government

