skip to main content


Title: Controlling the charge of dust particles in a plasma afterglow by timed switching of an electrode voltage
Abstract

A method is demonstrated for controlling the charge of a dust particle in a plasma afterglow, allowing a wider range of outcomes than an earlier method. As in the earlier method, the dust particles are located near an electrode that has a DC voltage during the afterglow. Here, that DC voltage is switched to a positive value at a specified delay time, instead of maintaining a constant negative voltage as in the earlier method. Adjusting the timing of this switching allows one to control the residual charge gradually over a wide range that includes both negative and positive values of charge. For comparison, only positive residual charges were attained in the earlier method. We were able to adjust the residual charge from about −2000 eto +10 000 e, for our experimental parameters (8.35 µm particles, 8 mTorr argon pressure, and a DC voltage that was switched from −150 V to +125 V within the first two milliseconds of the afterglow). The plasma conditions near the dust particles changed from ion-rich to electron-rich, when the electrode was switched from cathodic to anodic. Making this change at a specified time, as the electrons and ions decay in the afterglow, provides this control capability. These results also give insight into the time development of a dust particle’s charge in the afterglow, on a sub-millisecond time scale.

 
more » « less
Award ID(s):
1740379
NSF-PAR ID:
10422196
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
56
Issue:
37
ISSN:
0022-3727
Page Range / eLocation ID:
Article No. 375202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A dust particle immersed in a glow-discharge plasma has long been known to have a charge that isnegative, while the plasma is powered. However, in the afterglow, following the stopping of the plasma power, a largepositivecharge can collect on the particle, as was shown recently for particles in a cathodic sheath. While that outcome of positive charging in the afterglow may be common, an experimental discovery reported here reveals that the opposite outcome is also possible: a particle can develop anegativecharge in the afterglow, if the plasma had previously been operated with a modulated power. Before stopping the plasma power off altogether, in a run with power modulated at a low duty cycle of 4.5%, the particle’s residual charge was negative, but it was positive in a control run without modulation. This result points to a way of controlling the charge of dust particles in a decaying plasma, which can be useful for mitigating defects in semiconductor manufacturing.

     
    more » « less
  2. Abstract

    Particle contamination due to plasma processing motivates the design of a method of electrically lifting particles in a time interval after a plasma’s power is turned off. Small solid dust particles have electric charges that are not frozen until a late stage of the plasma afterglow. Beyond that time, before they fall to a surface below and cause defects, particles can be lifted in a controlled manner by applying an appropriate direct-current (DC) electric field, as we demonstrate experimentally. A few milliseconds after an argon plasma’s capacitively coupled radio-frequency power is switched off, a vertical DC electric field is applied. Thereafter, video imaging shows that the falling of the particles is slowed or stopped altogether, depending on the magnitude of the upward electric force.

     
    more » « less
  3. The Coulomb expansion of a thin cloud of charged dust particles was observed experimentally, in a plasma afterglow. This expansion occurs due to mutual repulsion among positively charged dust particles, after electrons and ions have escaped the chamber volume. In the experiment, a two-dimensional cloud of dust particles was initially levitated in a glow-discharge plasma. The power was then switched off to produce afterglow conditions. The subsequent fall of the dust cloud was slowed by reversing the electric force, to an upward direction, allowing an extended observation. At early time, measurements of the Coulomb expansion in the horizontal direction are found to be accurately modeled by the equation of state for a uniformly charged thin disk. Finally, bouncing from the lower electrode was found to be avoided by lowering the impact velocity <100 mm/s. 
    more » « less
  4. null (Ed.)
    Particle charging in the afterglows of non-thermal plasmas typically take place in a non-neutral space charge environment. We model the same by incorporating particle-ion collision rate constant models, developed in prior work by analyzing particle-ion trajectories calculated using Langevin Dynamics simulations, into species transport equations for ions, electrons and charged particles in the afterglow. A scaling analysis of particle charging and additional Langevin Dynamics calculations of the particle-ion collision rate constant are presented to extend the range of applicability to ion electrostatic to thermal energy ratios of 300 and diffusive Knudsen number (that scales inversely with gas pressure) up to 2000. The developed collision rate constant models are first validated by comparing predictions of particle charge against measured values in a stationary, non-thermal DC plasma from past PK-4 campaigns published in Phys. Rev. Lett. 93(8): 085001 and Phys. Rev. E 72(1): 016406). The comparisons reveal excellent agreement within ±35% for particles of radius 0.6,1.0,1.3 μm in the gas pressure range of ~20-150 Pa. The experiments to probe particle charge distributions by Sharma et al. (J. Physics D: Appl. Phys. 53(24): 245204) are modeled using the validated particle-ion collision rate constant models and the calculated charge fractions are compared with measurements. The comparisons reveal that the ion/electron concentration and gas temperature in the afterglow critically influence the particle charge and the predictions are generally in qualitative agreement with the measurements. Along with critical assessment of the modeling assumptions, several recommendations are presented for future experimental design to probe charging in afterglows. 
    more » « less
  5. Abstract Nano-second, capillary discharges (nCDs) are unique plasma sources in their ability to sustain high specific energy deposition ω dep approaching 10 eV/molecule in molecular gases. This high energy loading on short timescales produces both high plasma densities and high densities of molecular exited states. These high densities of electrons and excited states interact with each other during the early afterglow through electron collision quenching and associative ionization. In this paper we discuss results from a two-dimensional computational investigation of a nCD sustained in air at a pressure of 28.5 mbar and with a voltage amplitude 20 kV. Discharges were investigated for two circuit configurations—a floating low voltage electrode and with the low voltage electrode connected to ground through a ballast resistor. The first configuration produced a single ionization wave from the high to low voltage electrode. The second produced converging ionization waves beginning at both electrodes. With a decrease of the tube radius, the velocity of the ionization fronts decreased while the shape of the ionization wave changed from the electron density being distributed smoothly in the radial direction, to being hollow shaped where there is a higher electron density near the tube wall. For sufficiently small tubes, the near-wall maxima merge to have the higher density on the axis of the capillary tube. In the early afterglow, the temporal and radial behavior of the N 2 (C 3 Π u ) density is a sensitive function of ω dep due to electron collision quenching. These trends indicate that starting from ω dep ⩾ 0.3 eV/molecule, it is necessary to take into account interactions of electrons with electronically excited species during the discharge and early afterglow. 
    more » « less