skip to main content


Title: Real-Time Data-Predictive Attack-Recovery for Complex Cyber-Physical Systems
Cyber-physical systems (CPSs) leverage computations to operate physical objects in real-world environments, and increasingly more CPS-based applications have been designed for life-critical applications. Therefore, any vulnerability in such a system can lead to severe consequences if exploited by adversaries. In this paper, we present a data predictive recovery system to safeguard the CPS from sensor attacks, assuming that we can identify compromised sensors from data. Our recovery system guarantees that the CPS will never encounter unsafe states and will smoothly recover to a target set within a conservative deadline. It also guarantees that the CPS will remain within the target set for a specified period. Major highlights of our paper include (i) the recovery procedure works on nonlinear systems, (ii) the method leverages uncorrupted sensors to relieve uncertainty accumulation, and (iii) an extensive set of experiments on various nonlinear benchmarks that demonstrate our framework's performance and efficiency.  more » « less
Award ID(s):
2143256
PAR ID:
10422248
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
29th IEEE Real-Time and Embedded Technology and Applications Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyber-physical systems tightly integrate computational resources with physical processes through sensing and actuating, widely penetrating various safety-critical domains, such as autonomous driving, medical monitoring, and industrial control. Unfortunately, they are susceptible to assorted attacks that can result in injuries or physical damage soon after the system is compromised. Consequently, we require mechanisms that swiftly recover their physical states, redirecting a compromised system to desired states to mitigate hazardous situations that can result from attacks. However, existing recovery studies have overlooked stochastic uncertainties that can be unbounded, making a recovery infeasible or invalidating safety and real-time guarantees. This paper presents a novel recovery approach that achieves the highest probability of steering the physical states of systems with stochastic uncertainties to a target set rapidly or within a given time. Further, we prove that our method is sound, complete, fast, and has low computational complexity if the target set can be expressed as a strip. Finally, we demonstrate the practicality of our solution through the implementation in multiple use cases encompassing both linear and nonlinear dynamics, including robotic vehicles, drones, and vehicles in high-fidelity simulators. 
    more » « less
  2. Cyber-physical systems (CPS) have experienced rapid growth in recent decades. However, like any other computer-based systems, malicious attacks evolve mutually, driving CPS to undesirable physical states and potentially causing catastrophes. Although the current state-of-the-art is well aware of this issue, the majority of researchers have not focused on CPS recovery, the procedure we defined as restoring a CPS’s physical state back to a target condition under adversarial attacks. To call for attention on CPS recovery and identify existing efforts, we have surveyed a total of 30 relevant papers. We identify a major partition of the proposed recovery strategies: shallow recovery vs. deep recovery, where the former does not use a dedicated recovery controller while the latter does. Additionally, we surveyed exploratory research on topics that facilitate recovery. From these publications, we discuss the current state-of-the-art of CPS recovery, with respect to applications, attack type, attack surfaces and system dynamics. Then, we identify untouched sub-domains in this field and suggest possible future directions for researchers.

     
    more » « less
  3. Cyber-Physical Systems (CPS) have been increasingly subject to cyber-attacks including code injection attacks. Zero day attacks further exasperate the threat landscape by requiring a shift to defense in depth approaches. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if safety-critical applications such as automobiles are compromised. Moving target defense techniques such as instruction set randomization (ISR) have been commonly proposed to address these types of attacks. However, under current implementations an attack can result in system crashing which is unacceptable in CPS. As such, CPS necessitate proper control reconfiguration mechanisms to prevent a loss of availability in system operation. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating ISR, detection, and recovery capabilities that ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection attacks and reconfiguring the controller in real-time. The developed framework is demonstrated with an autonomous vehicle case study. 
    more » « less
  4. While many research efforts on Cyber-Physical System (CPS) security are devoted to attack detection, how to respond to the detected attacks receives little attention. Attack response is essential since serious consequences can be caused if CPS continues to act on the compromised data by the attacks. In this work, we aim at the response to sensor attacks and adapt machine learning techniques to recover CPSs from such attacks. There are, however, several major challenges. i) Cumulative error. Recovery needs to estimate the current state of a physical system (e.g., the speed of a vehicle) in order to know if the system has been driven to a certain state. However, the estimation error accumulates over time in presence of compromised sensors. ii) Timely response. A fast response is needed since slow recovery not only comes with large estimation errors but also may be too late to avoid irreparable consequences. To address these challenges, we propose a novel learning-based solution, named sequence-predictive recovery (or SeqRec). To reduce the estimation error, SeqRec designs the first sequence-to-sequence (Seq2Seq) model to uncover the temporal and spatial dependencies among sensors and control demands, and then uses the model to estimate system states using the trustworthy data logged in history. To achieve an adequate and fast recovery, SeqRec designs the second Seq2Seq model that considers both the current time step using the remaining intact sensors and the future time steps based on a given target state, and embeds the model into a novel recovery control algorithm to drive a physical system back to that state. Experimental results demonstrate that SeqRec can effectively and efficiently recover CPSs from sensor attacks. 
    more » « less
  5. The increasing autonomy and connectivity in cyber-physical systems (CPS) come with new security vulnerabilities that are easily exploitable by malicious attackers to spoof a system to perform dangerous actions. While the vast majority of existing works focus on attack prevention and detection, the key question is “what to do after detecting an attack?”. This problem attracts fairly rare attention though its significance is emphasized by the need to mitigate or even eliminate attack impacts on a system. In this article, we study this attack response problem and propose novel real-time recovery for securing CPS. First, this work’s core component is a recovery control calculator using a Linear-Quadratic Regulator (LQR) with timing and safety constraints. This component can smoothly steer back a physical system under control to a target state set before a safe deadline and maintain the system state in the set once it is driven to it. We further propose an Alternating Direction Method of Multipliers (ADMM) based algorithm that can fast solve the LQR-based recovery problem. Second, supporting components for the attack recovery computation include a checkpointer, a state reconstructor, and a deadline estimator. To realize these components respectively, we propose (i) a sliding-window-based checkpointing protocol that governs sufficient trustworthy data, (ii) a state reconstruction approach that uses the checkpointed data to estimate the current system state, and (iii) a reachability-based approach to conservatively estimate a safe deadline. Finally, we implement our approach and demonstrate its effectiveness in dealing with totally 15 experimental scenarios which are designed based on 5 CPS simulators and 3 types of sensor attacks. 
    more » « less