skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subleading power corrections to heavy quarkonium production in QCD factorization approach
We report the current understanding of heavy quarkonium production at high transverse momentum ( p T ) in hadronic collisions in terms of QCD factorization. In this presentation, we highlight the role of subleading power corrections to heavy quarkonium production, which are essential to describe the p T spectrum of quarkonium at a relatively lower p T . We also introduce prescription to match QCD factorization to fixed-order NRQCD factorization calculations for quarkonium production at low p T .  more » « less
Award ID(s):
2210533 1915093
PAR ID:
10422393
Author(s) / Creator(s):
; ; ;
Editor(s):
Rothkopf, A.; Brambilla, N.; Tolos, L.; Tranberg, A.; Kurkela, A.; Roehrich, D.; Andersen, J.O.; Tywoniuk, K.; Antonov, D.; Greensite, J.; Faber, M.; Schaefer, T.; Ghiglieri, J.; Goity, J.; Ketzer, B.; Constantinou, M.; Sazdjian, H.; Scimemi, I.; Stefanis, N.G.; Alford, M.more »; Blaschke, D.; Marton, J.; Schmitt, A.; Espriu, D.; Fodor, Z.; Pasechnik, R.; Rinaldi, E.; Vento, V.« less
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
274
ISSN:
2100-014X
Page Range / eLocation ID:
04005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heavy quarkonium production at high transverse momentum( p_T p T )in hadronic collisions is explored in the QCD factorization approach. Wefind that the leading power in the 1/p_T 1 / p T expansion is responsible for high p_T p T regime, while the next-to-leading power contribution is necessary forthe low p_T p T region. We present the first numerical analysis of the scale evolutionof coupled twist-2 and twist-4 fragmentation functions (FFs) for heavyquarkonium production and demonstrate that the QCD factorizationapproach is capable of describing the p_T p T spectrum of hadronic J/\psi J / ψ production at the LHC. 
    more » « less
  2. A<sc>bstract</sc> We compute the differential cross-section for direct quarkonium production accompanied by a gluon in high-energy deep inelastic scattering (DIS) at small-x. We employ the Non-Relativistic QCD factorization framework, focusing on theS-wave contribution to the formation of the quarkonium, and including both color singlet and octet contributions. Our short distance coefficients for the production of the heavy quark pair are obtained within the Color Glass Condensate effective field theory. Our results pave the way towards the next-to-leading order computation of direct quarkonium in DIS, as well as the study of azimuthal correlations of direct quarkonium and jet. 
    more » « less
  3. null (Ed.)
    A bstract We study heavy quarkonium production associated with gluons in e + e − annihilation as an illustration of the perturbative QCD (pQCD) factorization approach, which incorporates the first nonleading power in the energy of the produced heavy quark pair. We show how the renormalization of the four-quark operators that define the heavy quark pair fragmentation functions using dimensional regularization induces “evanescent” operators that are absent in four dimensions. We derive closed forms for short-distance coefficients for quark pair production to next-to-leading order ( $$ {\alpha}_s^2 $$ α s 2 ) in the relevant color singlet and octet channels. Using non-relativistic QCD (NRQCD) to calculate the heavy quark pair fragmentation functions up to v 4 in the velocity expansion, we derive analytical results for the differential energy fraction distribution of the heavy quarkonium. Calculations for $$ {}^3{S}_1^{\left[1\right]} $$ 3 S 1 1 and $$ {}^1{S}_0^{\left[8\right]} $$ 1 S 0 8 channels agree with analogous NRQCD analytical results available in the literature, while several color-octet calculations of energy fraction distributions are new. We show that the remaining corrections due to the heavy quark mass fall off rapidly in the energy of the produced state. To explore the importance of evolution at energies much larger than the mass of the heavy quark, we solve the renormalization group equation perturbatively to two-loop order for the $$ {}^1{S}_0^{\left[8\right]} $$ 1 S 0 8 case. 
    more » « less
  4. Bruno, G.E.; Chiodini, G.; Colangelo, P.; Corianò, C.; Creanza, D.M.; De Fazio, F.; Nappi, E. (Ed.)
    We discuss heavy-flavor production at hadron colliders in recent global QCD analyses to determine parton distribution functions (PDFs) in the proton. We discuss heavy-flavor treatments in precision theory predictions at the LHC. In particular, we discuss factorization schemes in presence of heavy flavors in proton-proton collisions, as well as the impact of heavy-flavor production at the LHC on PDFs. We show results of recent updates beyond CT18, the latest global QCD analysis from the CTEQ-TEA group. 
    more » « less
  5. We compute the differential cross section for direct quarkonium production in high-energy electron-nucleus collisions at small x . Our computation is performed within the nonrelativistic QCD factorization formalism that separates the calculation into short distance coefficients and long distance matrix elements that depend on the color and spin of the state. We obtain the short distance coefficients of the production of the heavy quark pair within the framework of the color glass condensate effective field theory, which resums coherent multiple interactions of the heavy quark pair with the nucleus to all orders. Our results are expressed as the convolution of perturbatively calculable functions with multipoint lightlike Wilson line correlators. In the correlation limit, we establish the correspondence between our color glass condensate formulation with calculations employing the transverse momentum dependent (TMD) framework. We extend this correspondence by resumming kinematic power corrections within the improved TMD framework, which interpolates between the TMD formalism and k -factorization formalism. We present a detailed numerical analysis, focusing on J / ψ production in the kinematics accessible at the future Electron-Ion Collider, highlighting the importance of genuine higher-order saturation contributions when the electron collides with a large nucleus. Our results are also valid in the photoproduction limit where we expect the largest contribution from genuine higher-order saturation contributions which could be accessed in ultraperipheral collisions of relativistic heavy ions. Published by the American Physical Society2024 
    more » « less