skip to main content

Title: RhoA/ROCK signalling activated by ARHGEF3 promotes muscle weakness via autophagy in dystrophic mdx mice
Abstract Background

Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, leads to progressive and fatal muscle weakness through yet‐to‐be‐fully deciphered molecular perturbations. Emerging evidence implicates RhoA/Rho‐associated protein kinase (ROCK) signalling in DMD pathology, yet its direct role in DMD muscle function, and related mechanisms, are unknown.


Three‐dimensionally engineered dystrophin‐deficientmdxskeletal muscles andmdxmice were used to test the role of ROCK in DMD muscle functionin vitroandin situ, respectively. The role of ARHGEF3, one of the RhoA guanine nucleotide exchange factors (GEFs), in RhoA/ROCK signalling and DMD pathology was examined by generatingArhgef3knockoutmdxmice. The role of RhoA/ROCK signalling in mediating the function of ARHGEF3 was determined by evaluating the effects of wild‐type or GEF‐inactive ARHGEF3 overexpression with ROCK inhibitor treatment. To gain more mechanistic insights, autophagy flux and the role of autophagy were assessed in various conditions with chloroquine.


Inhibition of ROCK with Y‐27632 improved muscle force production in 3D‐engineeredmdxmuscles (+25% from three independent experiments,P < 0.05) and in mice (+25%,P < 0.001). Unlike suggested by previous studies, this improvement was independent of muscle differentiation or quantity and instead related to increased muscle quality. We found that ARHGEF3 was elevated and responsible for RhoA/ROCK activation inmdxmuscles, and that depleting ARHGEF3 inmdxmice restored muscle quality (up to +36%,P < 0.01) and morphology without affecting regeneration. Conversely, overexpressing ARHGEF3 further compromisedmdxmuscle quality (−13% vs. empty vector control,P < 0.01) in GEF activity‐ and ROCK‐dependent manner. Notably, ARHGEF3/ROCK inhibition exerted the effects by rescuing autophagy which is commonly impaired in dystrophic muscles.


Our findings uncover a new pathological mechanism of muscle weakness in DMD involving the ARHGEF3‐ROCK‐autophagy pathway and the therapeutic potential of targeting ARHGEF3 in DMD.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Cachexia, Sarcopenia and Muscle
Page Range / eLocation ID:
p. 1880-1893
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by dystrophin mutations, leading to the loss of sarcolemmal integrity, and resulting in progressive myofibre necrosis and impaired muscle function. Our previous studies suggest that lipin1 is important for skeletal muscle regeneration and myofibre integrity. Additionally, we discovered that mRNA expression levels of lipin1 were significantly reduced in skeletal muscle of DMD patients and the mdx mouse model. To understand the role of lipin1 in dystrophic muscle, we generated dystrophin/lipin1 double knockout (DKO) mice, and compared the limb muscle pathology and function of wild‐type B10, muscle‐specific lipin1 deficient (lipin1Myf5cKO), mdx and DKO mice. We found that further knockout of lipin1 in dystrophic muscle exhibited a more severe phenotype characterized by increased necroptosis, fibrosis and exacerbated membrane damage in DKO compared to mdx mice. In barium chloride‐induced muscle injury, both lipin1Myf5cKOand DKO showed prolonged regeneration at day 14 post‐injection, suggesting that lipin1 is critical for muscle regeneration.In situcontractile function assays showed that lipin1 deficiency in dystrophic muscle led to reduced specific force production. Using a cell culture system, we found that lipin1 deficiency led to elevated expression levels of necroptotic markers and medium creatine kinase, which could be a result of sarcolemmal damage. Most importantly, restoration of lipin1 inhibited the elevation of necroptotic markers in differentiated primary lipin1‐deficient myoblasts. Overall, our data suggests that lipin1 plays complementary roles in myofibre stability and muscle function in dystrophic muscles, and overexpression of lipin1 may serve as a potential therapeutic strategy for dystrophic muscles.image

    Key points

    We identified that lipin1 mRNA expression levels are significantly reduced in skeletal muscles of Duchenne muscular dystrophy patients and mdx mice.

    We found that further depletion of lipin1 in skeletal muscles of mdx mice induces more severe dystrophic phenotypes, including enhanced myofibre sarcolemma damage, muscle necroptosis, inflammation, fibrosis and reduced specific force production.

    Lipin1 deficiency leads to elevated expression levels of necroptotic markers, whereas restoration of lipin1 inhibits their expression.

    Our results suggest that lipin1 is functionally complementary to dystrophin in muscle membrane integrity and muscle regeneration.

    more » « less
  2. Abstract Objective

    Magnetic resonance (MR) measures of muscle quality are highly sensitive to disease progression and predictive of meaningful functional milestones in Duchenne muscular dystrophy (DMD). This investigation aimed to establish the reproducibility, responsiveness to disease progression, and minimum clinically important difference (MCID) for multiple MR biomarkers at different disease stages in DMD using a large natural history dataset.


    Longitudinal MR imaging and spectroscopy outcomes and ambulatory function were measured in 180 individuals with DMD at three sites, including repeated measurements on two separate days (within 1 week) in 111 participants. These data were used to calculate day‐to‐day reproducibility, responsiveness (standardized response mean, SRM), minimum detectable change, and MCID. A survey of experts was also performed.


    MR spectroscopy fat fraction (FF), as well as MR imaging transverse relaxation time (MRI‐T2), measures performed in multiple leg muscles, and had high reproducibility (Pearson's R > 0.95). Responsiveness to disease progression varied by disease stage across muscles. The average FF from upper and lower leg muscles was highly responsive (SRM > 0.9) in both ambulatory and nonambulatory individuals. MCID estimated from the distribution of scores, by anchoring to function, and via expert opinion was between 0.01 and 0.05 for FF and between 0.8 and 3.7 ms for MRI‐T2.


    MR measures of FF and MRI T2are reliable and highly responsive to disease progression. The MCID for MR measures is less than or equal to the typical annualized change. These results confirm the suitability of these measures for use in DMD and potentially other muscular dystrophies.

    more » « less
  3. New Findings

    What is the central question of this study?

    Exertional heat stroke is accompanied by a marked inflammatory response. In this study, we explored the time course of acute phase proteins during recovery from severe heat stress in mice and the potential role of skeletal muscles as their source.

    What is the main finding and its importance?

    Exertional heat stroke transiently increased expression of acute phase proteins in mouse liver and plasma and depleted liver and plasma fibrinogen, a typical response to severe trauma. In contrast, skeletal muscle fibrinogen production was stimulated by heat stroke, which can provide an additional reservoir for fibrinogen supply to maintain the clotting potential throughout the body and locally within the muscle.


    Exertional heat stroke (EHS), the most severe manifestation of heat illness, is accompanied by a marked inflammatory response. The release of acute phase proteins (APPs) is an important component of inflammation, which can assist in tissue survival/repair. The time course of APPs in recovery from EHS is unknown. Furthermore, skeletal muscles produce APPs during infection, but it is unknown whether they can produce APPs after EHS. Our objective was to determine the time course of representative APPs in liver, plasma and skeletal muscle during recovery from EHS. Male C57BL6/J mice ran in a forced running wheel at 37.5°C, 40% relative humidity until symptom limitation. Exercise control (EXC) mice ran for the same duration and intensity at 22.5°C. Samples were collected (n = 6–12 per group) over 14 days of recovery. Protein abundance was quantified using immunoblots. Total and phosphorylated STAT3 (pSTAT3) at Tyr705, responsible for APP activation, increased in liver at 0.5 h after EHS compared with EXC, (P < 0.05 andP < 0.001, respectively). In contrast, in tibialis anterior (TA) muscle, total STAT3 increased at 3 h (P < 0.05) but pSTAT3 (Tyr705) did not. Liver serum amyloid A1 (SAA1) increased at 3 and 24 h after EHS (P < 0.05), whereas plasma SAA1 increased only at 3 h (P < 0.05). SAA1 was not detected in TA muscle. In liver and plasma, fibrinogen decreased at 3 h (P < 0.01) and increased in TA muscle (P < 0.05). Lipocalin‐2 was undetectable in liver or TA muscle. Recovery from EHS is characterized by a transient acute phase response in both liver and skeletal muscle. However, APP expression profiles and subtypes differ between skeletal muscle and liver.

    more » « less
  4. Abstract Background

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD). These mutations elevate the LRRK2 kinase activity, making LRRK2 kinase inhibitors an attractive therapeutic. LRRK2 kinase activity has been consistently linked to specific cell signaling pathways, mostly related to organelle trafficking and homeostasis, but its relationship to PD pathogenesis has been more difficult to define.LRRK2-PD patients consistently present with loss of dopaminergic neurons in the substantia nigra but show variable development of Lewy body or tau tangle pathology. Animal models carryingLRRK2mutations do not develop robust PD-related phenotypes spontaneously, hampering the assessment of the efficacy of LRRK2 inhibitors against disease processes. We hypothesized that mutations inLRRK2may not be directly related to a single disease pathway, but instead may elevate the susceptibility to multiple disease processes, depending on the disease trigger. To test this hypothesis, we have previously evaluated progression of α-synuclein and tau pathologies following injection of proteopathic seeds. We demonstrated that transgenic mice overexpressing mutant LRRK2 show alterations in the brain-wide progression of pathology, especially at older ages.


    Here, we assess tau pathology progression in relation to long-term LRRK2 kinase inhibition. Wild-type or LRRK2G2019Sknock-in mice were injected with tau fibrils and treated with control diet or diet containing LRRK2 kinase inhibitor MLi-2 targeting the IC50 or IC90 of LRRK2 for 3–6 months. Mice were evaluated for tau pathology by brain-wide quantitative pathology in 844 brain regions and subsequent linear diffusion modeling of progression.


    Consistent with our previous work, we found systemic alterations in the progression of tau pathology in LRRK2G2019Smice, which were most pronounced at 6 months. Importantly, LRRK2 kinase inhibition reversed these effects in LRRK2G2019Smice, but had minimal effect in wild-type mice, suggesting that LRRK2 kinase inhibition is likely to reverse specific disease processes in G2019S mutation carriers. Additional work may be necessary to determine the potential effect in non-carriers.


    This work supports a protective role of LRRK2 kinase inhibition in G2019S carriers and provides a rational workflow for systematic evaluation of brain-wide phenotypes in therapeutic development.

    more » « less
  5. Key points

    Maximum fascicle shortening/rotation was significantly decreased in paretic medial gastrocnemius (MG) muscles compared to non‐paretic MG muscles.

    The fascicle gear ratio on both sides decreased as the ankle became dorsiflexed, but the slope of the fascicle gear ratio over ankle joint angle was significantly lower on the paretic side.

    The side‐to‐side slope difference was strongly correlated with the relative maximum joint torque and with the relative shear wave speed, suggesting that variable gearing may explain muscle weakness after stroke.


    The present study aimed to understand variable fascicle gearing during voluntary isometric contractions of the medial gastrocnemius (MG) muscle in chronic stroke survivors. Using ultrasonography, we characterized fascicle behaviour on both paretic and non‐paretic sides during plantarflexion contractions at different intensities and at different ankle joint angles. Shear wave speed was also recorded from the MG muscle belly under passive conditions. Fascicle gear ratios were then calculated as the ratio of muscle belly shortening velocity to fascicle shortening velocity, and variable fascicle gearing was quantified from the slope of gear ratiovs. joint angle relations. This slope was used to establish associations with maximum joint torques and with shear wave speeds. At all measured angles, we found a significant reduction in both maximum fascicle shortening and maximum fascicle rotation on the paretic side compared to the non‐paretic side on our stroke survivor cohort. The fascicle rotation per fascicle shortening on the paretic side was also significantly smaller than on the non‐paretic side, especially at plantarflexed positions. Furthermore, the fascicle gear ratio on both sides decreased as the ankle became dorsiflexed, but the change in the fascicle gear ratio was significantly lower on the paretic side. The side‐to‐side difference in the gear ratio slope was also strongly correlated with the relative maximum joint torque and with the relative shear wave speed, suggesting that variable gearing may explain muscle weakness after stroke. Further studies are needed to investigate how muscular changes after stroke may impede variable gearing and adversely impact muscle performance.

    more » « less