skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: High-energy synchrotron flares powered by strongly radiative relativistic magnetic reconnection: 2D and 3D PIC simulations

The time evolution of high-energy synchrotron radiation generated in a relativistic pair plasma energized by reconnection of strong magnetic fields is investigated with 2D and 3D particle-in-cell (PIC) simulations. The simulations in this 2D/3D comparison study are conducted with the radiative PIC code OSIRIS, which self-consistently accounts for the synchrotron radiation reaction on the emitting particles, and enables us to explore the effects of synchrotron cooling. Magnetic reconnection causes compression of the plasma and magnetic field deep inside magnetic islands (plasmoids), leading to an enhancement of the flaring emission, which may help explain some astrophysical gamma-ray flare observations. Although radiative cooling weakens the emission from plasmoid cores, it facilitates additional compression there, further amplifying the magnetic field B and plasma density n, and thus partially mitigating this effect. Novel simulation diagnostics utilizing 2D histograms in the n-B space are developed and used to visualize and quantify the effects of compression. The n-B histograms are observed to be bounded by relatively sharp power-law boundaries marking clear limits on compression. Theoretical explanations for some of these compression limits are developed, rooted in radiative resistivity or 3D kinking instabilities. Systematic parameter-space studies with respect to guide magnetic field, system size, and upstream magnetization are conducted and suggest that stronger compression, brighter high-energy radiation, and perhaps significant quantum electrodynamic effects such as pair production, may occur in environments with larger reconnection-region sizes and higher magnetization, particularly when magnetic field strengths approach the critical (Schwinger) field, as found in magnetar magnetospheres.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 3812-3839
["p. 3812-3839"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the results of 3D particle-in-cell simulations that explore relativistic magnetic reconnection in pair plasma with strong synchrotron cooling and a small mass fraction of nonradiating ions. Our results demonstrate that the structure of the current sheet is highly sensitive to the dynamic efficiency of radiative cooling. Specifically, stronger cooling leads to more significant compression of the plasma and magnetic field within the plasmoids. We demonstrate that ions can be efficiently accelerated to energies exceeding the plasma magnetization parameter, ≫σ, and form a hard power-law energy distribution,fiγ−1. This conclusion implies a highly efficient proton acceleration in the magnetospheres of young pulsars. Conversely, the energies of pairs are limited to eitherσin the strong cooling regime or the radiation burnoff limit,γsyn, when cooling is weak. We find that the high-energy radiation from pairs above the synchrotron burnoff limit,εc≈ 16 MeV, is only efficiently produced in the strong cooling regime,γsyn<σ. In this regime, we find that the spectral cutoff scales asεcutεc(σ/γsyn) and the highest energy photons are beamed along the direction of the upstream magnetic field, consistent with the phenomenological models of gamma-ray emission from young pulsars. Furthermore, our results place constraints on the reconnection-driven models of gamma-ray flares in the Crab Nebula.

    more » « less
  2. ABSTRACT High-energy astrophysical systems frequently contain collision-less relativistic plasmas that are heated by turbulent cascades and cooled by emission of radiation. Understanding the nature of this radiative turbulence is a frontier of extreme plasma astrophysics. In this paper, we use particle-in-cell simulations to study the effects of external inverse Compton radiation on turbulence driven in an optically thin, relativistic pair plasma. We focus on the statistical steady state (where injected energy is balanced by radiated energy) and perform a parameter scan spanning from low magnetization to high magnetization (0.04 ≲ σ ≲ 11). We demonstrate that the global particle energy distributions are quasi-thermal in all simulations, with only a modest population of non-thermal energetic particles (extending the tail by a factor of ∼2). This indicates that non-thermal particle acceleration (observed in similar non-radiative simulations) is quenched by strong radiative cooling. The quasi-thermal energy distributions are well fit by analytic models in which stochastic particle acceleration (due to, e.g. second-order Fermi mechanism or gyroresonant interactions) is balanced by the radiation reaction force. Despite the efficient thermalization of the plasma, non-thermal energetic particles do make a conspicuous appearance in the anisotropy of the global momentum distribution as highly variable, intermittent beams (for high magnetization cases). The beamed high-energy particles are spatially coincident with intermittent current sheets, suggesting that localized magnetic reconnection may be a mechanism for kinetic beaming. This beaming phenomenon may explain rapid flares observed in various astrophysical systems (such as blazar jets, the Crab nebula, and Sagittarius A*). 
    more » « less

    The magnetorotational instability (MRI) plays a crucial role in regulating the accretion efficiency in astrophysical accretion discs. In low-luminosity discs around black holes, such as Sgr A* and M87, Coulomb collisions are infrequent, making the MRI physics effectively collisionless. The collisionless MRI gives rise to kinetic plasma effects that can potentially affect its dynamic and thermodynamic properties. We present 2D and 3D particle-in-cell (PIC) plasma simulations of the collisionless MRI in stratified discs using shearing boxes with net vertical field. We use pair plasmas, with initial β = 100 and concentrate on subrelativistic plasma temperatures (kBT ≲ mc2). Our 2D and 3D runs show disc expansion, particle and magnetic field outflows, and a dynamo-like process. They also produce magnetic pressure dominated discs with (Maxwell stress dominated) viscosity parameter α ∼ 0.5–1. By the end of the simulations, the dynamo-like magnetic field tends to dominate the magnetic energy and the viscosity in the discs. Our 2D and 3D runs produce fairly similar results, and are also consistent with previous 3D MHD (magnetohydrodynamic) simulations. Our simulations also show non-thermal particle acceleration, approximately characterized by power-law tails with temperature-dependent spectral indices − p. For temperatures $k_\mathrm{ B}T \sim 0.05-0.3\, mc^2$, we find p ≈ 2.2–1.9. The maximum accelerated particle energy depends on the scale separation between MHD and Larmor-scale plasma phenomena in a way consistent with previous PIC results of magnetic reconnection-driven acceleration. Our study constitutes a first step towards modelling from first principles potentially observable stratified MRI effects in low-luminosity accretion discs around black holes.

    more » « less
  4. Abstract

    Active galactic nuclei in general, and the supermassive black hole in M87 in particular, show bright and rapid gamma-ray flares up to energies of 100 GeV and above. For M87, the flares show multiwavelength components, and the variability timescale is comparable to the dynamical time of the event horizon, suggesting that the emission may come from a compact region near the nucleus. However, the emission mechanism for these flares is not well understood. Recent high-resolution general-relativistic magnetohydrodynamic simulations show the occurrence of episodic magnetic reconnection events that can power flares near the black hole event horizon. In this work, we analyze the radiative properties of the reconnecting current layer under the extreme plasma conditions applicable to the black hole in M87 from first principles. We show that abundant pair production is expected in the vicinity of the reconnection layer, to the extent that the produced secondary pair plasma dominates the reconnection dynamics. Using analytic estimates backed by two-dimensional particle-in-cell simulations, we demonstrate that in the presence of strong synchrotron cooling, reconnection can produce a hard power-law distribution of pair plasma imprinted in the outgoing synchrotron (up to a few tens of MeV) and the inverse-Compton signal (up to TeV). We produce synthetic radiation spectra from our simulations, which can be directly compared with the results of future multiwavelength observations of M87* flares.

    more » « less
  5. Abstract

    Some of the most energetic pulsars exhibit rotation-modulatedγ-ray emission in the 0.1–100 GeV band. The luminosity of this emission is typically 0.1%–10% of the pulsar spin-down power (γ-ray efficiency), implying that a significant fraction of the available electromagnetic energy is dissipated in the magnetosphere and reradiated as high-energy photons. To investigate this phenomenon we model a pulsar magnetosphere using 3D particle-in-cell simulations with strong synchrotron cooling. We particularly focus on the dynamics of the equatorial current sheet where magnetic reconnection and energy dissipation take place. Our simulations demonstrate that a fraction of the spin-down power dissipated in the magnetospheric current sheet is controlled by the rate of magnetic reconnection at microphysical plasma scales and only depends on the pulsar inclination angle. We demonstrate that the maximum energy and the distribution function of accelerated pairs is controlled by the available magnetic energy per particle near the current sheet, the magnetization parameter. The shape and the extent of the plasma distribution is imprinted in the observed synchrotron emission, in particular, in the peak and the cutoff of the observed spectrum. We study how the strength of synchrotron cooling affects the observed variety of spectral shapes. Our conclusions naturally explain why pulsars with higher spin-down power have wider spectral shapes and, as a result, lowerγ-ray efficiency.

    more » « less