skip to main content


Title: Ecological genetics of local adaptation in Arabidopsis : An 8‐year field experiment
Abstract

There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade‐offs? Here we address these questions in the self‐pollinating, annual plantArabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade‐offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8‐year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3‐year study, identifying one new genetic trade‐off and resolving one genetic trade‐off into two conditionally adaptive QTL.

 
more » « less
NSF-PAR ID:
10422476
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
32
Issue:
16
ISSN:
0962-1083
Page Range / eLocation ID:
p. 4570-4583
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes ofArabidopsis thalianafrom Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism inCBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes ofCBF2on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes ofCBF2to their genetic background ecotypes. The effects ofCBF2were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreignCBF2genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed thatCBF2encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.

     
    more » « less
  2. Abstract

    Local adaptation is common in plants, yet characterization of its underlying genetic basis is rare in herbaceous perennials. Moreover, while many plant species exhibit intraspecific chemical defence polymorphisms, their importance for local adaptation remains poorly understood. We examined the genetic architecture of local adaptation in a perennial, obligately‐outcrossing herbaceous legume, white clover (Trifolium repens). This widespread species displays a well‐studied chemical defence polymorphism for cyanogenesis (HCN release following tissue damage) and has evolved climate‐associated cyanogenesis clines throughout its range. Two biparental F2 mapping populations, derived from three parents collected in environments spanning the U.S. latitudinal species range (Duluth, MN, St. Louis, MO and Gainesville, FL), were grown in triplicate for two years in reciprocal common garden experiments in the parental environments (6,012 total plants). Vegetative growth and reproductive fitness traits displayed trade‐offs across reciprocal environments, indicating local adaptation. Genetic mapping of fitness traits revealed a genetic architecture characterized by allelic trade‐offs between environments, with 100% and 80% of fitness QTL in the two mapping populations showing significant QTL×E interactions, consistent with antagonistic pleiotropy. Across the genome there were three hotspots of QTL colocalization. Unexpectedly, we found little evidence that the cyanogenesis polymorphism contributes to local adaptation. Instead, divergent life history strategies in reciprocal environments were major fitness determinants: selection favoured early investment in flowering at the cost of multiyear survival in the southernmost site versus delayed flowering and multiyear persistence in the northern environments. Our findings demonstrate that multilocus genetic trade‐offs contribute to contrasting life history characteristics that allow for local adaptation in this outcrossing herbaceous perennial.

     
    more » « less
  3. Abstract

    Plants have evolved diverse reproductive allocation strategies and seed traits to aid in dispersal, persistence in the seed bank, and establishment. In particular, seed size, dormancy, and early seedling vigor are thought to be key functional traits with important recruitment and fitness consequences across abiotic stress gradients. Selection for favored seed-trait combinations, or against maladaptive combinations, is likely an important driver shaping recruitment strategies. Here, we test for seed-trait plasticity and patterns of recruitment using two genotypes representative of contrasting upland and lowland ecotypes of Panicum hallii with field experiments in native versus foreign habitats. Furthermore, we test whether seed traits have been under directional selection in P. hallii using the v-test based on trait variance in a genetic cross. Finally, we evaluate the genetic architecture of ecotypic divergence for these traits with quantitative trait locus (QTL) mapping. Field experiments reveal little plasticity but support a hypothesis of adaptation divergence among ecotypes based on recruitment. Patterns of segregation within recombinant hybrids provides strong support for directional selection driving ecotypic divergence in seed traits. Genetic mapping revealed a polygenic architecture with evidence of genetic correlation between seed mass, dormancy, and seedling vigor. Our results suggest that the evolution of these traits may involve constraints that affect the direction of adaptive divergence. For example, seed size and germination percentage shared two colocalized QTL with antagonistic additive effects. This supports the hypothesis of a functional genetic relationship between these traits, resulting in either large seed/strong dormancy or small seed/weak dormancy trait combinations. Overall, our study provides insights into the factors facilitating and potentially constraining ecotypic differentiation in seed traits.

     
    more » « less
  4. Abstract

    Environmental heterogeneity is considered a general explanation for phenotypic diversification, particularly when heterogeneity causes populations to diverge via local adaptation. Performance trade‐offs, such as those stemming from antagonistic pleiotropy, are thought to contribute to the maintenance of diversity in this scenario. Specifically, alleles that promote adaptation in one environment are expected to promote maladaptation in alternative environments. Contrary to this expectation, however, alleles that underlie locally adaptive traits often fail to exhibit fitness costs in alternative environments. Here, we attempt to explain this paradox by reviewing the results of experimental evolution studies, including a new one of our own, that examined the evolution of trade‐offs during adaptation to homogeneous versus heterogeneous environments. We propose that when pleiotropic effects vary, whether or not trade‐offs emerge among diverging populations will depend critically on ecology. For example, adaptation to a locally homogeneous environment is more likely to occur by alleles that are antagonistically pleiotropic than adaptation to a locally heterogeneous environment, simply because selection is blind to costs associated with environments that are not experienced locally. Our literature review confirmed the resulting prediction that performance trade‐offs were more likely to evolve during selection in homogeneous than heterogeneous environments. The nature of the environmental heterogeneity (spatial versus temporal) and the length of the experiment also contributed in predictable ways to the likelihood that performance trade‐offs evolved.

     
    more » « less
  5. Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured post-embryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856), and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body size. We further examined these size-associated QTL using chromosome substitution strains and near-isogenic lines, and validated the chromosome X QTL. Additionally, we generated a list of candidate genes for the chromosome X QTL. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of body size in C. elegans natural populations. 
    more » « less