skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thoughts on Alan Selman (1941--2021)
Alan L. Selman passed away on January 22, 2021, at the age of 79. And with that passing, one fewer giant of the field walks among us. Alan, in his gentle, dignified way, was in his work, his service, and his mentoring of the next generations the most passionate advocate that structural complexity has ever had; I do not think we will see his like again.  more » « less
Award ID(s):
2006496
PAR ID:
10422848
Author(s) / Creator(s):
Date Published:
Journal Name:
Bulletin of the European Association for Theoretical Computer Science
Issue:
133
ISSN:
0252-9742
Page Range / eLocation ID:
15 - 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2000, the Nobel Prize in Chemistry was awarded to Hideki Shirakawa, Alan G. MacDiarmid, and Alan J. Heeger “for the discovery and development of electrically conductive polymers.” While this award was in reference to their collaborative efforts on conducting polyacetylene in the mid-to-late 1970s, the narrative leading up to these efforts began in 1967 with the production of polyacetylene plastic films via what has been called a “fortuitous error.” At the heart of this discovery were Shirakawa and a visiting Korean scientist, Hyung Chick Pyun. The current report provides background on Pyun and, for the first time, presents his version of the events leading to the discovery of polyacetylene films in order to provide new insight into this important historical event. 
    more » « less
  2. null (Ed.)
    Warmest thanks to Rafael Pass and Muthu Venkitasubramaniam for this issue's guest column, "Average-Case Complexity Through the Lens of Interactive Puzzles." When I mentioned to them that my introduction would have a section on Alan Selman's passing, they immediately wrote back that they were very sorry to hear of Alan's passing, and mentioned (as you will see discussed in the second page of their article), "The main problem that we are addressing actually goes back to a paper of Even, Selman, and Yacobi from 1984: "The Complexity of Promise Problems with Applications to Public-Key Cryptography'." It is beautiful, and a tribute to the lasting influence of Alan's research, that in the 2020s his work from many decades earlier is helping shape the field's dialogue. 
    more » « less
  3. Nelson, Karen E (Ed.)
    Abstract Artificial light at night (ALAN), an increasing anthropogenic driver, is widespread and shows rapid expansion with potential adverse impact on the terrestrial ecosystem. However, whether and to what extent does ALAN affect plant phenology, a critical factor influencing the timing of terrestrial ecosystem processes, remains unexplored due to limited ALAN observation. Here, we used the Black Marble ALAN product and phenology observations from USA National Phenology Network to investigate the impact of ALAN on deciduous woody plants phenology in the conterminous United States. We found that (1) ALAN significantly advanced the date of breaking leaf buds by 8.9 ± 6.9 days (mean ± SD) and delayed the coloring of leaves by 6.0 ± 11.9 days on average; (2) the magnitude of phenological changes was significantly correlated with the intensity of ALAN (P < 0.001); and (3) there was an interaction between ALAN and temperature on the coloring of leaves, but not on breaking leaf buds. We further showed that under future climate warming scenarios, ALAN will accelerate the advance in breaking leaf buds but exert a more complex effect on the coloring of leaves. This study suggests intensified ALAN may have far-reaching but underappreciated consequences in disrupting key ecosystem functions and services, which requires an interdisciplinary approach to investigate. Developing lighting strategies that minimize the impact of ALAN on ecosystems, especially those embedded and surrounding major cities, is challenging but must be pursued. 
    more » « less
  4. Since the invention of electric lighting, artificial light at night (ALAN) has become a defining, and evolutionary novel, feature of human-altered environments especially in cities. ALAN imposes negative impacts on many organisms, including disrupting endocrine function, metabolism, and reproduction. However, we do not know how generalized these impacts are across taxa that exploit urban environments. We exposed brown anole lizards, an abundant and invasive urban exploiter, to relevant levels of ALAN in the laboratory and assessed effects on growth and reproduction at the start of the breeding season. Male and female anoles exposed to ALAN increased growth and did not suffer increased levels of corticosterone. ALAN exposure induced earlier egg-laying, likely by mimicking a longer photoperiod, and increased reproductive output without reducing offspring quality. These increases in growth and reproduction should increase fitness. Anoles, and potentially other taxa, may be resistant to some negative effects of ALAN and able to take advantage of the novel niche space ALAN creates. ALAN and both its negative and positive impacts may play a crucial role in determining which species invade and exploit urban environments. 
    more » « less
  5. Artificial light at night (ALAN) is a globally widespread and expanding form of anthropogenic change that impacts arthropod biodiversity. ALAN alters interspecific interactions between arthropods, including predation and parasitism. Despite their ecological importance as prey and hosts, the impact of ALAN on larval arthropod stages, such as caterpillars, is poorly understood. We examined the hypothesis that ALAN increases top-down pressure on caterpillars from arthropod predators and parasitoids. We experimentally illuminated study plots with moderate levels (10–15 lux) of LED lighting at light-naive Hubbard Brook Experimental Forest, New Hampshire. We measured and compared between experimental and control plots: (i) predation on clay caterpillars, and (ii) abundance of arthropod predators and parasitoids. We found that predation rates on clay caterpillars and abundance of arthropod predators and parasitoids were significantly higher on ALAN treatment plots relative to control plots. These results suggest that moderate levels of ALAN increase top-down pressure on caterpillars. We did not test mechanisms, but sampling data indicates that increased abundance of predators near lights may play a role. This study highlights the importance of examining the effects of ALAN on both adult and larval life stages and suggests potential consequences of ALAN on arthropod populations and communities. 
    more » « less