Abstract In this paper, we present the first high‐speed video observation of a cloud‐to‐ground lightning flash and its associated downward‐directed Terrestrial Gamma‐ray Flash (TGF). The optical emission of the event was observed by a high‐speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric‐field fast antenna, and the National Lightning Detection Network. The cloud‐to‐ground flash associated with the observed TGF was formed by a fast downward leader followed by a very intense return stroke peak current of −154 kA. The TGF occurred while the downward leader was below cloud base, and even when it was halfway in its propagation to ground. The suite of gamma‐ray and lightning instruments, timing resolution, and source proximity offer us detailed information and therefore a unique look at the TGF phenomena.
more »
« less
Atmospheric Gamma-ray Observations at the Telescope Array Detector
Abstract Previously in AtmoHead-2018, we reported joint observations by Telescope Array Surface Detector (TASD), Lightning Mapping Array (LMA), sferic sensor and broadband interferometer of particle showers coincident with lightning. These consisted of energetic showers of approximately less than 10 microsecond duration with footprints on the ground of 3-6 kilometers in diameter, originating in the first one to two milliseconds of downward lightning leaders and coincident with high-current processes within the leaders. Scintillator waveform and simulation studies confirmed that these showers must consist primarily of gamma radiation. On September 11, 2021, atmospheric discharges emitting gamma rays were, for the first time, recorded by a high-speed camera and by lightning detectors on the ground simultaneously. The events were detected by the Telescope Array located in the Utah desert and were filmed by the Phantom v2012 camera, set at an acquisition rate of 40,000 frames per second (fps) in conjunction with the Lightning Mapping Array (LMA), an interferometer, a fast antenna, and the National Lightning Detection Network (NLDN). Results from this study reported the new observation of several events of significantly longer duration and higher uence, bridging the gap between the TASD and satellite-based detections. These events further demonstrate the similarity between the upward and downward TGF varieties and the likelihood of a common origin for their production.
more »
« less
- Award ID(s):
- 2112709
- PAR ID:
- 10423016
- Date Published:
- Journal Name:
- Journal of Physics: Conference Series
- Volume:
- 2398
- Issue:
- 1
- ISSN:
- 1742-6588
- Page Range / eLocation ID:
- 012008
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Córdoba Argentina Marx Meter Array (CAMMA), consisting of 10 second‐generation Huntsville Alabama Marx Meter Array (HAMMA 2) sensors, operated at Córdoba, Argentina, during the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign in late 2018. Initial results obtained from the campaign demonstrate that the new sensor is able to provide a significantly more detailed depiction of various lightning processes than its first generation. The lightning flashes mapped by the CAMMA and a colocated Lightning Mapping Array (LMA) were compared. The overall flash structures mapped by the CAMMA and the LMA look similar for most of the flashes. However, comparisons at smaller time scale show that the majority of CAMMA and LMA sources are not concurrent, indicating that unmatched sources were possibly due to different physical processes in leader propagation dominating different frequencies and differences in data processing and location techniques.more » « less
-
null (Ed.)The National Research Institute for Earth Science and Disaster Resilience deployed a lightning mapping array (LMA) in the Tokyo metropolitan area in March 2017. Called the “Tokyo LMA,” it obtains detailed three-dimensional observations of the total lightning activity (cloud-to-ground and intracloud flashes) in storms. The network initially consisted of 8 receiving stations, expanded to 12 stations in March 2018. Real-time total lightning images were first opened on the webpage in Japan. Real-time observations from the Tokyo LMA will be used in nowcasting lightning hazards and mitigating lightning disasters. Archived data will be used to develop lightning prediction techniques and a lightning climatology for the Tokyo metropolitan area.more » « less
-
Abstract The Guangdong Lightning Mapping Array (GDLMA), as the first LMA in China, was deployed in Guangzhou, Guangdong Province, China, in November 2018 by the Chinese Academy of Meteorological Sciences and New Mexico Institute of Mining and Technology. An evaluation was conducted using Monte Carlo and an aircraft track. The average timing uncertainty of GDLMA is 35 ns based on the distributions of reduced chi‐square values. Based on the aircraft track, the average horizontal error is 13 m and the average vertical error is 41 m at an altitude of 4–5 km over the network, consistent with the Monte Carlo results. Location errors outside the network exhibit noticeable directionality. The ability to characterize lightning channels varies with different location errors. In locations that are far from the network center, only the basic structure of lightning flash can be presented, while closer to the network, the flash channel structure can be mapped well. Compared with Low‐to‐Mid Frequency E‐field Detection Array (MLFEDA), they were generally similar in overall structure, and some lightning flash characteristics such as flash duration and coverage area exhibited consistency. However, GDLMA demonstrated better flash channel structure characterization capability, while MLFEDA performed better in processes such as leader/return strokes. In addition, based on the comparison of spatial positions of one‐on‐one discharge events, we found that very high frequency sources were more located ahead of low frequency sources in the direction of lightning channel development.more » « less
-
Abstract Simultaneous data from two interferometers separated by 16 km and synchronized within 100 ns were collected for a thunderstorm near Langmuir Lab on October 23, 2018. Analysis via triangulation followed by a least squares fit to time of arrival across all six antennae produced a three‐dimensional interferometer (3DINTF) data set. Simultaneous Lightning Mapping Array data enabled an independent calculation of 3DINTF accuracy, yielding a median location uncertainty of 200 m. This is the most accurate verified result to date for a two‐station interferometer. The 3D data allowed profiling the velocity of multiple dart leaders and K leaders that followed the same channel. 3D velocities calculated from the in‐cloud initiation site to ground ranged from 3 × 106to 20 × 106 m/s. Average velocity generally increased with subsequent leaders, consistent with increased conditioning of the channel. Also, all leaders showed a factor of 2–3 decrease in velocity as they proceeded over 15 km of channel. We speculate that the velocity decrease is consistent with energy lost in the reionization of the channel at the leader tip. This paper includes an appendix providing details of the triangulation technique used.more » « less