skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forced Isotropic Turbulence Data Set (Extended)
The data is from a direct numerical simulation of forced isotropic turbulence on a 10243 periodic grid, using a pseudo-spectral parallel code. Time integration of the viscous term is done analytically using integrating factor. The other terms are integrated using a second-order Adams-Bashforth scheme and the nonlinear term is written in vorticity form1. The simulation is de-aliased using phase-shift and a 2√2 /3 truncation2,3. Energy is injected by keeping constant the total energy in modes such that their wave-number magnitude is less or equal to 2. After the simulation has reached a statistical stationary state, 5028 frames of data, which includes the 3 components of the velocity vector and the pressure, are generated and ingested into the database. The duration of the stored data is about five large-eddy turnover times.  more » « less
Award ID(s):
2103874
PAR ID:
10423310
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Johns Hopkins Turbulence Databases
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The data is from a direct numerical simulation of forced isotropic turbulence on a 4096-cubed periodic grid, using a pseudo-spectral parallel code. The simulations are documented in Ref. 1. Time integration uses second-order Runge-Kutta. The simulation is de-aliased using phase-shifting and truncation. Energy is injected by keeping the energy density in the lowest wavenumber modes prescribed following the approach of Donzis & Yeung. After the simulation has reached a statistical stationary state, a frame of data, which includes the 3 components of the velocity vector and the pressure, are generated and written in files that can be accessed directly by the database (FileDB system). 
    more » « less
  2. The turbulent channel flow database is produced from a direct numerical simulation (DNS) of wall bounded flow with periodic boundary conditions in the longitudinal and transverse directions, and no-slip conditions at the top and bottom walls. In the simulation, the Navier-Stokes equations are solved using a wall {normal, velocity {vorticity formulation. Solutions to the governing equations are provided using a Fourier-Galerkin pseudo-spectral method for the longitudinal and transverse directions and seventh-order Basis-splines (B-splines) collocation method in the wall normal direction. De-aliasing is performed using the 3/2-rule [3]. Temporal integration is performed using a low-storage, third-order Runge-Kutta method. Initially, the flow is driven using a constant volume flux control (imposing a bulk channel mean velocity of U = 1) until stationary conditions are reached. Then the control is changed to a constant applied mean pressure gradient forcing term equivalent to the shear stress resulting from the prior steps. Additional iterations are then performed to further achieve statistical stationarity before outputting fields. 
    more » « less
  3. This paper proposed an energy function-embedded quasi-steady-state model for efficient simulation of cascading outages on a power grid while addressing transient stability concerns. Compared to quasi-steady-state models, the proposed model incorporates short-term dynamic simulation and an energy function method to efficiently evaluate the transient stability of a power grid together with outage propagation without transient stability simulation. Cascading outage simulation using the proposed model conducts three steps for each disturbance such as a line outage. First, it performs time-domain simulation for a short term to obtain a post-disturbance trajectory. Second, along the trajectory, the system state with the local maximum potential energy is found and used as the initial point to search for a relevant unstable equilibrium by Newton's method. Third, the transient energy margin is estimated based on this unstable equilibrium to predict an out-of-step condition with generators. The proposed energy function-embedded quasi-steady-state model is tested in terms of its accuracy and time performance on an NPCC 140-bus power system and compared to a quasi-steady-state model embedding transient stability simulation. 
    more » « less
  4. Abstract The surface kinetic energy of a 1/48° global ocean simulation and its distribution as a function of frequency and location are compared with the one estimated from 15,329 globally distributed surface drifter observations at hourly resolution. These distributions follow similar patterns with a dominant low‐frequency component and well‐defined tidal and near‐inertial peaks globally. Quantitative differences are identified with deficits of low‐frequency energy near the equator (factor 2) and at near‐inertial frequencies (factor 3) and an excess of energy at semidiurnal frequencies (factor 4) for the model. Owing to its hourly resolution and its near‐global spatial coverage, the array of surface drifters is an invaluable tool to evaluate the realism of tide‐resolving high‐resolution ocean simulations used in observing system simulation experiments. Sources of bias between model and drifter data are discussed, and associated leads for future work highlighted. 
    more » « less
  5. Jointly using data from multiple similar sources for the training of prediction models is increasingly becoming an important task in many fields of science. In this paper, we propose a framework for {\it generalist and specialist} predictions that leverages multiple datasets, with potential heterogenity in the relationships between predictors and outcomes. Our framework uses ensembling with stacking, and includes three major components: 1) training of the ensemble members using one or more datasets, 2) a no-data-reuse technique for stacking weights estimation and 3) task-specific utility functions. We prove that under certain regularity conditions, our framework produces a stacked prediction function with oracle property. We also provide analytically the conditions under which the proposed no-data-reuse technique will increase the prediction accuracy of the stacked prediction function compared to using the full data. We perform a simulation study to numerically verify and illustrate these results and apply our framework to predicting mortality based on a collection of variables including long-term exposure to common air pollutants. 
    more » « less