The stirring and mixing of heat and momentum in the ocean surface boundary layer (OSBL) are dominated by 1 to 10 km fluid flows – too small to be resolved in global and regional ocean models. Instead, these processes are parametrized. Two main parametrizations include vertical mixing by surface-forced metre-scale turbulence and overturning by kilometre-scale submesoscale frontal flows and instabilities. In present models, these distinct parametrizations are implemented in tandem, yet ignore meaningful interactions between these two scales that may influence net turbulent fluxes. Using a large-eddy simulation of frontal spin down resolving processes at both scales, this work diagnoses submesoscale and surface-forced turbulence impacts that are the foundation of OSBL parametrizations, following a traditional understanding of these flows. It is shown that frontal circulations act to suppress the vertical buoyancy flux by surface forced turbulence, and that this suppression is not represented by traditional boundary layer turbulence theory. A main result of this work is that current OSBL parametrizations excessively mix buoyancy and overestimate turbulence dissipation rates in the presence of lateral flows. These interactions have a direct influence on the upper ocean potential vorticity and energy budgets with implications for global upper ocean budgets and circulation.
more »
« less
Homogeneous Buoyancy Driven Turbulence Data Set
The data is from a direct numerical simulation (DNS) of homogeneous buoyancy driven turbulence on a 1024-cubed periodic grid. (See README-HBDT.pdf linked document for equations and details.) The simulation was performed with the variable-density version of the petascale CFDNS code. The database covers both the buoyancy driven increase in turbulence intensity as well as the buoyancy mediated turbulence decay.
more »
« less
- Award ID(s):
- 2103874
- PAR ID:
- 10423312
- Publisher / Repository:
- Johns Hopkins Turbulence Databases
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman Buoyancy Flux (or the Ekman-Stokes Buoyancy Flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies.more » « less
-
Abstract Differentially rotating stars and planets transport angular momentum (AM) internally due to turbulence at rates that have long been a challenge to predict reliably. We develop a self-consistent saturation theory, using a statistical closure approximation, for hydrodynamic turbulence driven by the axisymmetric Goldreich–Schubert–Fricke instability at the stellar equator with radial differential rotation. This instability arises when fast thermal diffusion eliminates the stabilizing effects of buoyancy forces in a system where a stabilizing entropy gradient dominates over the destabilizing AM gradient. Our turbulence closure invokes a dominant three-wave coupling between pairs of linearly unstable eigenmodes and a near-zero frequency, viscously damped eigenmode that features latitudinal jets. We derive turbulent transport rates of momentum and heat and provide them in analytic forms. Such formulae, free of tunable model parameters, are tested against direct numerical simulations; the comparison shows good agreement. They improve upon prior quasi-linear or “parasitic saturation” models containing a free parameter. Given model correspondences, we also extend this theory to heat and compositional transport for axisymmetric thermohaline-instability-driven turbulence in certain regimes.more » « less
-
Abstract Closing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.more » « less
-
Abstract In shallow coastal oceans, turbulent flows driven by surface winds and waves and constrained by a solid bottom disperse particles. This work examines the mechanisms driving horizontal and vertical dispersion of buoyant and sinking particles for times much greater than turbulent integral time scales. Turbulent fields are modeled using a wind‐stress driven large eddy simulation (LES), incorporating wave‐driven Langmuir turbulence, surface breaking wave turbulent kinetic energy inputs, and a solid bottom boundary. A Lagrangian stochastic model is paired to the LES to incorporate Lagrangian particle tracking. Within a subset of intermediate buoyant rise velocities, particles experience synergistic vertical mixing in which breaking waves (BW) inject particles into Langmuir downwelling velocities sufficient to drive deep mixing. Along‐wind dispersion is controlled by vertical shear in mean along‐wind velocities. Wind and bottom friction‐driven vertical shear enhances dispersion of buoyant and sinking particles, while energetic turbulent mixing, such as from BW, dampens shear dispersion. Strongly rising and sinking particles trapped at the ocean surface and bottom, respectively, experience no vertical shear, resulting in low rates of along‐wind dispersion. Crosswind dispersion is shaped by particle advection in wind‐aligned fields of counter‐rotating Langmuir and Couette roll cells. Langmuir cells enhance crosswind dispersion in neutrally to intermediately buoyant particles through enhanced cell hopping. Surface trapping restricts particles to Langmuir convergence regions, strongly inhibiting crosswind dispersion. In shallow coastal systems, particle dispersion depends heavily on particle buoyancy and wave‐dependent turbulent effects.more » « less
An official website of the United States government
