skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proline C−H Bonds as Loci for Proline Assembly via C−H/O Interactions
Abstract Proline residues within proteins lack a traditional hydrogen bond donor. However, the hydrogens of the proline ring are all sterically accessible, with polarized C−H bonds at Hα and Hδ that exhibit greater partial positive character and can be utilized as alternative sites for molecular recognition. C−H/O interactions, between proline C−H bonds and oxygen lone pairs, have been previously identified as modes of recognition within protein structures and for higher‐order assembly of protein structures. In order to better understand intermolecular recognition of proline residues, a series of proline derivatives was synthesized, including 4R‐hydroxyproline nitrobenzoate methyl ester, acylated on the proline nitrogen with bromoacetyl and glycolyl groups, and Boc‐4S‐(4‐iodophenyl)hydroxyproline methyl amide. All three derivatives exhibited multiple close intermolecular C−H/O interactions in the crystallographic state, with H⋅⋅⋅O distances as close as 2.3 Å. These observed distances are well below the 2.72 Å sum of the van der Waals radii of H and O, and suggest that these interactions are particularly favorable. In order to generalize these results, we further analyzed the role of C−H/O interactions in all previously crystallized derivatives of these amino acids, and found that all 26 structures exhibited close intermolecular C−H/O interactions. Finally, we analyzed all proline residues in the Cambridge Structural Database of small‐molecule crystal structures. We found that the majority of these structures exhibited intermolecular C−H/O interactions at proline C−H bonds, suggesting that C−H/O interactions are an inherent and important mode for recognition of and higher‐order assembly at proline residues. Due to steric accessibility and multiple polarized C−H bonds, proline residues are uniquely positioned as sites for binding and recognition via C−H/O interactions.  more » « less
Award ID(s):
2004110 1616490
PAR ID:
10423419
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemBioChem
Volume:
23
Issue:
24
ISSN:
1439-4227
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structures at serine‐proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)‐(4‐iodophenyl)hydroxyproline [hyp(4‐I‐Ph)]. The crystal structure of Boc‐Ser‐hyp(4‐I‐Ph)‐OMe had two molecules in the unit cell. One molecule exhibitedcis‐proline and a type VIa2 β‐turn (BcisD). Thecis‐proline conformation was stabilized by a C–H/O interaction between Pro C–Hαand the Ser side‐chain oxygen. NMR data were consistent with stabilization ofcis‐proline by a C–H/O interaction in solution. The other crystallographically observed molecule hadtrans‐Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac‐Ser‐hyp(4‐I‐Ph)‐OMe, with Ser adopting PPII in one and the β conformation in the other, each with Pro in the δ conformation andtrans‐Pro. Structures at Ser‐Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser‐Pro versus Ala–Pro sequences were compared to identify bases for Ser stabilization of local structures. C–H/O interactions between the Ser side‐chain Oγand Pro C–Hαwere observed in 45% of structures with Ser‐cis‐Pro in the PDB, with nearly all Ser‐cis‐Pro structures adopting a type VI β‐turn. 53% of Ser‐trans‐Pro sequences exhibited main‐chain COi•••HNi+3or COi•••HNi+4hydrogen bonds, with Ser as theiresidue and Pro as thei + 1 residue. These structures were overwhelmingly either type I β‐turns or N‐terminal capping motifs on α‐helices or 310‐helices. These results indicate that Ser‐Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or β conformation, with the Ser Oγcapable of engaging in a hydrogen bond with the amide N–H of thei + 2 (type I β‐turn or 310‐helix; Serχ1t) ori + 3 (α‐helix; Serχ1g+) residue. Non‐prolinecisamide bonds can also be stabilized by C–H/O interactions. 
    more » « less
  2. In proteins, proline-aromatic sequences exhibit increased frequencies of cis-proline amide bonds, via proposed C–H/π interactions between the aromatic ring and either the proline ring or the backbone C–Hα of the residue prior to proline. These interactions would be expected to result in tryptophan, as the most electron-rich aromatic residue, exhibiting the highest frequency of cis-proline. However, prior results from bioinformatics studies on proteins and experiments on proline-aromatic sequences in peptides have not revealed a clear correlation between the properties of the aromatic ring and the population of cis-proline. An investigation of the effects of aromatic residue (aromatic ring properties) on the conformation of proline-aromatic sequences was conducted using three distinct approaches: (1) NMR spectroscopy in model peptides of the sequence Ac-TGPAr-NH2 (Ar = encoded and unnatural aromatic amino acids); (2) bioinformatics analysis of structures in proline-aromatic sequences in the PDB; and (3) computational investigation using DFT and MP2 methods on models of proline-aromatic sequences and interactions. C–H/π and hydrophobic interactions were observed to stabilize local structures in both the trans-proline and cis-proline conformations, with both proline amide conformations exhibiting C–H/π interactions between the aromatic ring and Hα of the residue prior to proline (Hα-trans-Pro-aromatic and Hα-cis-Pro-aromatic interactions) and/or with the proline ring (trans-ProH-aromatic and cis-ProH-aromatic interactions). These C–H/π interactions were strongest with tryptophan (Trp) and weakest with cationic histidine (HisH+). Aromatic interactions with histidine were modulated in strength by His ionization state. Proline-aromatic sequences were associated with specific conformational poses, including type I and type VI β-turns. C–H/π interactions at the pre-proline Hα, which were stronger than interactions at Pro, stabilize normally less favorable conformations, including the ζ or αL conformations at the pre-proline residue, cis-proline, and/or the g+ χ1 rotamer or αL conformation at the aromatic residue. These results indicate that proline-aromatic sequences, especially Pro-Trp sequences, are loci to nucleate turns, helices, loops, and other local structures in proteins. These results also suggest that mutations that introduce proline-aromatic sequences, such as the R406W mutation that is associated with protein misfolding and aggregation in the microtubule-binding protein tau, might result in substantial induced structure, particularly in intrinsically disordered regions of proteins. 
    more » « less
  3. Tau misfolding, oligomerization, and aggregation are central to the pathology of Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), frontotemporal dementia, and other tauopathies. Increased phosphorylation of tau is associated with conformational changes that are not fully understood. Moreover, tau oligomerization and aggregation are associated with proline cis-trans isomerism, with the phosphorylation-dependent prolyl isomerase Pin1 reducing tau hyperphosphorylation and aggregation. The FTDP-17 tau mutation R406W is frequently used in animal models of Alzheimer's disease, due to earlier onset of the AD phenotype. Despite its extensive application, the mechanisms by which tau-R406W leads to enhanced aggregation and neurotoxicity are poorly understood. Peptides derived from the tau C-terminal domain were examined by NMR spectroscopy as a function of residue 406 identity (Arg versus Trp) and Ser404 phosphorylation state. The R406W modification led to an increased population of Pro405 cis amide bond, which is stabilized by cis-proline-aromatic C–H/π interactions. Ser404 phosphorylation also resulted in an increase in cis amide bond, via a proposed C–H/O interaction between the Pro Hα and the phosphate that stabilizes the cis conformation. An analogous C–H/O interaction was observed in Glu-cis-Pro sequences in the PDB, and is proposed to be the basis of the increased propensity for cis amide bonds in Glu-Pro sequences. The higher activation barriers for proline cis-trans isomerization observed at pSer-Pro and pThr-Pro sequences are proposed to be due to both (a) an intraresidue phosphate-amide bond that stabilizes the trans-proline conformation and (b) the cis-stabilizing proline-phosphate C–H/O interaction identified herein. The combination of both pSer404 and R406W resulted in a further increase in the population of cis amide bond. In contrast to expectations, the R406W modification led to increased dephosphorylation of either pSer404 or pSer409 by PP2A, and had no effect on phosphorylation of Ser404 by cdk5, suggesting that R406W does not inherently increase Ser404 phosphorylation via changes in the actions of these enzymes. Modestly increased phosphorylation of Ser404 was observed by GSK-3β in tau R406W. Collectively, these data suggest a potential role for conformational change to a cis amide bond at Pro405, via Ser404 phosphorylation and/or R406W modification, as a possible mechanism involved in protein misfolding in AD, CTE, and FTDP-17. Alternatively, both Ser404 phosphorylation and the R406W modification lead to increased order, including induced turn formation, in both the trans-proline and cis-proline conformations. 
    more » « less
  4. The structure of zymonic acid (systematic name: 4-hydroxy-2-methyl-5-oxo-2,5-dihydrofuran-2-carboxylic acid), C 6 H 6 O 5 , which had previously eluded crystallographic determination, is presented here for the first time. It forms by intramolecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxopropanoic acid), C 3 H 4 O 3 , at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B 33 , 210–212]. In zymonic acid, the hydroxylactone ring is close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carboxylic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carboxylic acid group relative to the ring is 12.04 (16)°. The pyruvic acid molecule is almost planar, having a dihedral angle between the carboxylic acid and methyl-ketone groups of 3.95 (6)°. Intermolecular interactions in both crystal structures are dominated by hydrogen bonding. The common R 2 2 (8) hydrogen-bonding motif links carboxylic acid groups on adjacent molecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C 2/ c , which forces the carboxylic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C—O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O—H...O and weak C—H...O), link molecules across a 2 1 -screw axis, and generate an R 2 2 (9) motif. These hydrogen-bonding interactions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related molecules are linked into R 2 2 (8) dimers, with van der Waals interactions between dimers as the only other intermolecular contacts. 
    more » « less
  5. The synthesis of the title compound, C 13 H 21 NO 2 S, is reported here along with its crystal structure. This compound crystallizes with two molecules in the asymmetric unit. The sulfonamide functional group of this structure features S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—C bond lengths of 1.777 (3) and 1.773 (4) Å, and S—N bond lengths of 1.622 (3) and 1.624 (3) Å. When viewing the molecules down the S—N bond, the isopropyl groups are gauche to the aromatic ring. On each molecule, two methyl hydrogen atoms of one isopropyl group are engaged in intramolecular C—H...O hydrogen bonds with a nearby sulfonamide oxygen atom. Intermolecular C—H...O hydrogen bonds and C—H...π interactions link molecules of the title compound in the solid state. 
    more » « less