Plant phenology or life-history patterns change seasonally as plants grow, mature, flower, and produce fruit and seed. Plant phenology follows seasonal patterns, yet variation may occur due to annual differences in the timing of rainfall and ambient temperature shifts. Foliage growth, flower, fruit, and seed production are important aspects of plant population dynamics and food resource availability for animals. The purpose of this study is to assess phenological patterns of plants across a series of biotic communities that represent an environmental moisture gradient. These communities all in the Chihuahuan Desert include: creosote bush shrubland, black grama grassland, and blue grama grassland. Plant phenology is recorded for all plant species across 4 replicate 200 m transects at each of the 3 habitat sites. Plant phenology measurements are taken once every month from February through October. The first ten individuals (or ten representative individuals) of each plant species encountered along each transect are assessed for life-history status. Data from the site P and J were only collected in 2000 and 2001 and are included in this data set.
more »
« less
Core Site Phenology Study from the Chihuahaun Desert Grassland and Shrubland at the Sevilleta National Wildlife Refuge, New Mexico
Plant phenology or life-history patterns change seasonally as plants grow, mature, flower, and produce fruit and seed. Plant phenology follows seasonal patterns, yet variation may occur due to annual differences in the timing of rainfall and ambient temperature shifts. Foliage growth, flower, fruit, and seed production are important aspects of plant population dynamics and food resource availability for animals. The purpose of this study is to assess phenological patterns of plants across a series of biotic communities that represent an environmental moisture gradient. These communities all in the Chihuahuan Desert include: creosote bush shrubland, black grama grassland, and blue grama grassland. Plant phenology is recorded for all plant species across 4 replicate 200 m transects at each of the 3 habitat sites. Plant phenology measurements are taken once every month from February through October. The first ten individuals (or ten representative individuals) of each plant species encountered along each transect are assessed for life-history status. Data from the site P and J were only collected in 2000 and 2001 and are included in this data set.
more »
« less
- Award ID(s):
- 1655499
- NSF-PAR ID:
- 10423436
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Begun in spring 2013, this project is part of a long-term study at the Sevilleta LTER measuring net primary production (NPP) across three distinct ecosystems: creosote-dominant shrubland (Site C), black grama-dominant grassland (Site G), and blue grama-dominant grassland (Site B). Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes. Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and foliage, over time and incorporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots within each site. A third sampling at Site C is performed in the winter. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV999, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV999, "Seasonal Biomass and Seasonal and Annual NPP for Core Grid Research Sites."more » « less
-
This study investigated the question, "Does climate change affect vegetation and seed bank composition in desert grasslands?" The work was done in the Sevilleta National Wildlife Refuge, New Mexico, USA, in in the Extreme Drought in Grassland Experiment (EDGE). Vegetation and seed bank species composition were recorded in black grama (Bouteloua eriopoda) and blue grama (B. gracilis) grasslands at Sevilleta. At each site, two rainfall manipulations and ambient controls were established in 2013 (n=10). Treatments included extreme drought (-66% rainfall reduction) and delayed monsoon (precipitation captured during July-August and reapplied during September-October). Aboveground species composition was assessed and composite soil samples were collected in 2017, five years after the experiment started. Seed bank composition was evaluated using the seedling emergence method. Rainfall treatments increased aboveground species richness at both sites, and seed bank richness only in the blue grama community. Vegetation cover was reduced by both rainfall manipulations, but seed bank density increased or remained the same compared with controls. In aboveground vegetation, cover of annual and perennial forbs increased, and dominant perennial grasses decreased. In the soil seed bank, species composition was similar among all treatments and was dominated by annual and perennial forbs. The seed bank was more resistant to drought than aboveground vegetation. Because seed banks enhance long-term community stability, their drought resistance plays an important role in maintaining ecosystem processes during and following drought in these grassland communities.more » « less
-
This dataset contains pinon-juniper woodland biomass data and is part of a long-term study at the Sevilleta LTER measuring net primary production (NPP) across four distinct ecosystems: creosote-dominant shrubland (Site C, est. winter 1999), black grama-dominant grassland (Site G, est. winter 1999), blue grama-dominant grassland (Site B, est. winter 2002), and pinon-juniper woodland (Site P, est. winter 2003). Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes. Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and and foliage, over time and incoporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots within each site. A third sampling at Site C is performed in the winter. Volumetric measurements are made using vegetation data from permanent plots (SEV278, "Pinon-Juniper (Core Site) Quadrat Data for the Net Primary Production Study") and regressions correlating species biomass and volume constructed using seasonal harvest weights from SEV157, "Net Primary Productivity (NPP) Weight Data."more » « less
-
This dataset contains pinon-juniper woodland quadrat data and is part of a long-term study at the Sevilleta LTER measuring net primary production (NPP) across four distinct ecosystems: creosote-dominant shrubland (Site C, est. winter 1999), black grama-dominant grassland (Site G, est. winter 1999), blue grama-dominant grassland (Site B, est. winter 2002), and pinon-juniper woodland (Site P, est. winter 2003). Net primary production is a fundamental ecological variable that quantifies rates of carbon consumption and fixation. Estimates of NPP are important in understanding energy flow at a community level as well as spatial and temporal responses to a range of ecological processes. Above-ground net primary production is the change in plant biomass, represented by stems, flowers, fruit and and foliage, over time and incorporates growth as well as loss to death and decomposition. To measure this change the vegetation variables in this dataset, including species composition and the cover and height of individuals, are sampled twice yearly (spring and fall) at permanent 1m x 1m plots within each site. A third sampling at Site C is performed in the winter. The data from these plots is used to build regressions correlating biomass and volume via weights of select harvested species obtained in SEV157, "Net Primary Productivity (NPP) Weight Data." This biomass data is included in SEV182, "Seasonal Biomass and Seasonal and Annual NPP for Core Research Sites."more » « less