skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minidisc influence on flow variability in accreting spinning black hole binaries: simulations in full general relativity
ABSTRACT We perform magnetohydrodynamic simulations of accreting, equal-mass binary black holes in full general relativity focusing on the effect of spin and minidiscs on the accretion rate and Poynting luminosity variability. We report on the structure of the minidiscs and periodicities in the mass of the minidiscs, mass accretion rates, and Poynting luminosity. The accretion rate exhibits a quasi-periodic behaviour related to the orbital frequency of the binary in all systems that we study, but the amplitude of this modulation is dependent on the existence of persistent minidiscs. In particular, systems that are found to produce persistent minidiscs have a much weaker modulation of the mass accretion rate, indicating that minidiscs can increase the inflow time of matter on to the black holes, and dampen out the quasi-periodic behaviour. This finding has potential consequences for binaries at greater separations where minidiscs can be much larger and may dampen out the periodicities significantly.  more » « less
Award ID(s):
2145421 1912619
PAR ID:
10423755
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
520
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
392 to 401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Supermassive binary black holes are a key target for the future Laser Interferometer Space Antenna and excellent multimessenger sources across the electromagnetic (EM) spectrum. However, unique features of their EM emission that are needed to distinguish them from single supermassive black holes are still being established. Here, we conduct the first magnetohydrodynamic simulation of disk accretion onto equal-mass, nonspinning, eccentric binary black holes in full general relativity, incorporating synchrotron radiation transport through the dual jet in postprocessing. Focusing on a binary in the strong-field dynamical spacetime regime with eccentricitye= 0.3 as a point of principle, we show that the total accretion rate exhibits periodicity on the binary orbital period. We also show, for the first time, that this periodicity is reflected in the jet Poynting luminosity and the optically thin synchrotron emission from the jet base. Furthermore, we find a distinct EM signature for eccentric binaries: they spend more time in a low emission state (at apocenter) and less in a high state (at pericenter). Additionally, we find that the eccentric binary quasiperiodic gravitational-wave (GW) bursts are coincident with the bursts in Poynting luminosity and synchrotron emission. Finally, we discuss how multimessenger EM and GW observations of these systems can help probe plasma physics in their jet. 
    more » « less
  2. ABSTRACT We investigate the time-varying electromagnetic emission of a low-mass-ratio supermassive black hole binary (SMBHB) embedded in a circumprimary disc, with a particular interest in variability of shocks driven by the binary. We perform a 2D, locally isothermal hydrodynamics simulation of an SMBHB with mass ratio q = 0.01 and separation a = 100 Rg, using a physically self-consistent steady disc model. We estimate the electromagnetic variability from the system by monitoring accretion on to the secondary and using an artificial viscosity scheme to capture shocks and monitor the energy dissipated. The SMBHB produces a wide, eccentric gap in the disc, previously only observed for larger mass ratios, which we attribute to our disc model being much thinner (H/R ≈ 0.01 near the secondary) than is typical of previous works. The eccentric gap drives periodic accretion on to the secondary SMBH on a time-scale matching the orbital period of the binary, $$t_{\rm {bin}}\approx 0.1\,\,\rm {yr}$$, implying that the variable accretion regime of the SMBHB parameter space extends to lower mass ratios than previously established. Shocks driven by the binary are periodic, with a period matching the orbital period, and the shocks are correlated with the accretion rate, with peaks in the shock luminosity lagging peaks in the accretion rate by 0.43 tbin. We propose that the correlation of these quantities represents a useful identifier of SMBHB candidates, via observations of correlated variability in X-ray and ultraviolet monitoring of active galactic nuclei, rather than single-waveband periodicity alone. 
    more » « less
  3. Abstract We present fully relativistic predictions for the electromagnetic emission produced by accretion disks surrounding spinning and nonspinning supermassive binary black holes on the verge of merging. We use the codeBothrosto post-process data from 3D general relativistic magnetohydrodynamic simulations via ray-tracing calculations. These simulations model the dynamics of a circumbinary disk and the mini-disks that form around two equal-mass black holes orbiting each other at an initial separation of 20 gravitational radii, and evolve the system for more than 10 orbits in the inspiral regime. We model the emission as the sum of thermal blackbody radiation emitted by an optically thick accretion disk and a power-law spectrum extending to hard X-rays emitted by a hot optically thin corona. We generate time-dependent spectra, images, and light curves at various frequencies to investigate intrinsic periodic signals in the emission, as well as the effects of the black hole spin. We find that prograde black hole spin makes mini-disks brighter since the smaller innermost stable circular orbit angular momentum demands more dissipation before matter plunges to the horizon. However, compared to mini-disks in larger separation binaries with spinning black holes, our mini-disks are less luminous: unlike those systems, their mass accretion rate is lower than in the circumbinary disk, and they radiate with lower efficiency because their inflow times are shorter. Compared to a single black hole system matched in mass and accretion rate, these binaries have spectra noticeably weaker and softer in the UV. Finally, we discuss the implications of our findings for the potential observability of these systems. 
    more » « less
  4. Abstract Accreting supermassive binary black holes (SMBBHs) are potential multimessenger sources because they emit both gravitational-wave and electromagnetic (EM) radiation. Past work has shown that their EM output may be periodically modulated by an asymmetric density distribution in the circumbinary disk, often called an “overdensity” or “lump;” this modulation could possibly be used to identify a source as a binary. We explore the sensitivity of the overdensity to SMBBH mass ratio and magnetic flux through the accretion disk. We find that the relative amplitude of the overdensity and its associated EM periodic signal both degrade with diminishing mass ratio, vanishing altogether somewhere between 1:2 and 1:5. Greater magnetization also weakens the lump and any modulation of the light output. We develop a model to describe how lump formation results from internal stress degrading faster in the lump region than it can be rejuvenated through accretion inflow, and predicts a threshold value in specific internal stress below which lump formation should occur and which all our lump-forming simulations satisfy. Thus, detection of such a modulation would provide a constraint on both mass ratio and magnetic flux piercing the accretion flow. 
    more » « less
  5. ABSTRACT The shrinking of a binary orbit driven by the interaction with a gaseous circumbinary disc, initially advocated as a potential way to catalyse the binary merger, has recently been debated in the case of geometrically thick (i.e. with H/R ≳ 0.1) discs. However, a clear consensus is still missing mainly owing to numerical limitations, such as fixed orbit binaries or lack of resolution inside the cavity carved by the binary in its circumbinary disc. In this work, we assess the importance of evolving the binary orbit by means of hydrodynamic simulations performed with the code gizmo in meshless finite mass mode. In order to model the interaction between equal mass circular binaries and their locally isothermal circumbinary discs, we enforce hyper-Lagrangian resolution inside the cavity. We find that fixing the binary orbit ultimately leads to an overestimate of the gravitational torque that the gas exerts on the binary and an underestimate of the torque due to the accretion of material on to the binary components. Furthermore, we find that the modulation of the accretion rate on the binary orbital period is strongly suppressed in the fixed orbit simulation, while it is clearly present in the live binary simulations. This has potential implications for the prediction of the observable periodicities in massive black hole binary candidates. 
    more » « less