The early-type star gamma Cas illuminates the reflection nebulae IC 59 and IC 63, creating two photodissociation regions (PDRs). Uncertainties about the distances to the nebulae and the resulting uncertainty about the density of the radiation fields incident on their surfaces have hampered the study of these PDRs during the past three decades. We employed far-ultraviolet (UV) – optical nebula – star colour differences of dust-scattered light to infer the locations of the nebulae relative to the plane of the sky containing gamma Cas, finding IC 63 to be positioned behind the star and IC 59 in front of the star. To obtain the linear distances of the nebulae relative to gamma Cas, we fit far-infrared archival Herschel flux data for IC 59 and IC 63 with modified blackbody curves and relate the resulting dust temperatures with the luminosity of gamma Cas, yielding approximate distances of 4.15 pc for IC 59 and 2.3 pc for IC 63. With these distances, using updated far-UV flux data in the 6–13.6 eV range for gamma Cas with two recent determinations of the interstellar extinction for gamma Cas, we estimate that the far-UV radiation density at the surface of IC 63 takes on values of G0 = 58 or G0 = 38 with respective values for E(B − V) for gamma Cas of 0.08 and 0.04 mag. This is a substantial reduction from the range 150 ≤ G0 ≤ 650 used for IC 63 during the past three decades. The corresponding, even lower new values for IC 59 are G0 = 18 and G0 = 12.
We used high-resolution [C
- NSF-PAR ID:
- 10423788
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 140
- Size(s):
- Article No. 140
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Photodissociation regions (PDRs), where the (far-)ultraviolet light from hot young stars interact with the gas in surrounding molecular clouds, provide laboratories for understanding the nature and role of feedback by star formation on the interstellar medium. While the general nature of PDRs is well understood—at least under simplified conditions—the detailed dynamics and chemistry of these regions, including gas clumping, evolution over time, etc., can be very complex. We present interferometric observations of the 21 cm atomic hydrogen line, combined with [C
ii ] 158μ m observations, toward the nearby reflection nebula IC 63. We find a clumpy Hi structure in the PDR, and a ring morphology for the Hi emission at the tip of IC 63. We further unveil kinematic substructure, of the order of 1 km s−1, in the PDR layers and several legs that will disperse IC 63 in <0.5 Myr. We find that the dynamics in the PDR explain the observed clumpy Hi distribution and lack of a well-defined Hi /H2transition front. However, it is currently not possible to conclude whether Hi self-absorption and nonequilibrium chemistry also contribute to this clumpy morphology and missing Hi /H2transition front. -
Abstract We have measured the gas temperature in the IC 63 photodissociation region (PDR) using the S(1) and S(5) pure rotation lines of molecular hydrogen with SOFIA/EXES. We divide the PDR into three regions for analysis based on the illumination from γ Cas: sunny, ridge, and shady. Constructing rotation diagrams for the different regions, we obtain temperatures of T ex = 562 − 43 + 52 K toward the ridge and T ex = 495 − 25 + 28 K in the shady side. The H 2 emission was not detected on the sunny side of the ridge, likely due to the photodissociation of H 2 in this gas. Our temperature values are lower than the value of T ex = 685 ± 68 K using the S(1), S(3), and S(5) pure rotation lines, derived by Thi et al. using lower spatial resolution ISO-SWS data at a different location of the IC 63 PDR. This difference indicates that the PDR is inhomogeneous and illustrates the need for high-resolution mapping of such regions to fully understand their physics. The detection of a temperature gradient correlated with the extinction into the cloud, points to the ability of using H 2 pure rotational line spectroscopy to map the gas temperature on small scales. We used a PDR model to estimate the FUV radiation and corresponding gas densities in IC 63. Our results shows the capability of SOFIA/EXES to resolve and provide detailed information on the temperature in such regions.more » « less
-
Abstract Magnetic fields of molecular clouds in the central molecular zone (CMZ) have been relatively under-observed at sub-parsec resolution. Here, we report JCMT/POL2 observations of polarized dust emission in the CMZ, which reveal magnetic field structures in dense gas at ∼0.5 pc resolution. The 11 molecular clouds in our sample include two in the western part of the CMZ (Sgr C and a farside cloud candidate), four around the Galactic longitude 0 (the 50 km s−1cloud, CO 0.02−0.02, the
Stone , and theSticks and Straw among the Three Little Pigs), and five along the Dust Ridge (G0.253+0.016, clouds b, c, d, and e/f), for each of which we estimate the magnetic field strength using the angular dispersion function method. The morphologies of magnetic fields in the clouds suggest potential imprints of feedback from expanding Hii regions and young massive star clusters. A moderate correlation between the total viral parameter versus the star formation rate (SFR) and the dense gas fraction of the clouds is found. A weak correlation between the mass-to-flux ratio and the SFR, and a weak anticorrelation between the magnetic field and the dense gas fraction are also found. Comparisons between magnetic fields and other dynamic components in clouds suggest a more dominant role of self-gravity and turbulence in determining the dynamical states of the clouds and affecting star formation at the studied scales. -
Abstract M82 is an archetypal starburst galaxy in the local Universe. The central burst of star formation, thought to be triggered by M82's interaction with other members in the M81 group, is driving a multiphase galaxy-scale wind away from the plane of the disk that has been studied across the electromagnetic spectrum. Here, we present new velocity-resolved observations of the [C
ii ] 158μ m line in the central disk and the southern outflow of M82 using the upGREAT instrument on board SOFIA. We also report the first detections of velocity-resolved (ΔV = 10 km s−1) [Cii ] emission in the outflow of M82 at projected distances of ≈1–2 kpc south of the galaxy center. We compare the [Cii ] line profiles to observations of CO and Hi and find that likely the majority (>55%) of the [Cii ] emission in the outflow is associated with the neutral atomic medium. We find that the fraction of [Cii ] actually outflowing from M82 is small compared to the bulk gas outside the midplane (which may be in a halo or tidal streamers), which has important implications for observations of [Cii ] outflows at higher redshift. Finally, by comparing the observed ratio of the [Cii ] and CO intensities to models of photodissociation regions, we estimate that the far-ultraviolet (FUV) radiation field in the disk is ∼103.5G 0, in agreement with previous estimates. In the outflow, however, the FUV radiation field is 2–3 orders of magnitudes lower, which may explain the high fraction of [Cii ] arising from the neutral medium in the wind.