skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ground states in spatially discrete non-linear Schrödinger models
Abstract In the seminal work (Weinstein 1999Nonlinearity12673), Weinstein considered the question of the ground states for discrete Schrödinger equations with power law nonlinearities, posed on Z d . More specifically, he constructed the so-called normalised waves, by minimising the Hamiltonian functional, for fixed powerP(i.e.l2mass). This type of variational method allows one to claim, in a straightforward manner, set stability for such waves. In this work, we revisit these questions and build upon Weinstein’s work, as well as the innovative variational methods introduced for this problem in (Laedkeet al1994Phys. Rev. Lett.731055 and Laedkeet al1996Phys. Rev.E544299) in several directions. First, for the normalised waves, we show that they are in fact spectrally stable as solutions of the corresponding discrete nonlinear Schroedinger equation (NLS) evolution equation. Next, we construct the so-called homogeneous waves, by using a different constrained optimisation problem. Importantly, this construction works for all values of the parameters, e.g.l2supercritical problems. We establish a rigorous criterion for stability, which decides the stability on the homogeneous waves, based on the classical Grillakis–Shatah–Strauss/Vakhitov–Kolokolov (GSS/VK) quantity ω φ ω l 2 2 . In addition, we provide some symmetry results for the solitons. Finally, we complement our results with numerical computations, which showcase the full agreement between the conclusion from the GSS/VK criterion vis-á-vis with the linearised problem. In particular, one observes that it is possible for the stability of the wave to change as the spectral parameterωvaries, in contrast with the corresponding continuous NLS model.  more » « less
Award ID(s):
2110030
PAR ID:
10423796
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Nonlinearity
Volume:
36
Issue:
8
ISSN:
0951-7715
Page Range / eLocation ID:
p. 4053-4085
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We studyℓnorms ofℓ2-normalized eigenfunctions of quantum cat maps. For maps with short quantum periods (constructed by Bonechi and de Biévre in F Bonechi and S De Bièvre (2000,Communications in Mathematical Physics,211, 659–686)) we show that there exists a sequence of eigenfunctionsuwith u log N 1 / 2 . For general eigenfunctions we show the upper bound u log N 1 / 2 . Here the semiclassical parameter is h = 2 π N 1 . Our upper bound is analogous to the one proved by Bérard in P Bérard (1977,Mathematische Zeitschrift,155, 249-276) for compact Riemannian manifolds without conjugate points. 
    more » « less
  2. Abstract In the seminal work of Benjamin (1974Nonlinear Wave Motion(American Mathematical Society)), in the late 70s, he has derived the ubiquitous Benjamin model, which is a reduced model in the theory of water waves. Notably, it contains two parameters in its dispersion part and under some special circumstances, it turns into the celebrated KdV or the Benjamin–Ono equation, During the 90s, there was renewed interest in it. Benjamin (1992J. Fluid Mech.245401–11; 1996Phil. Trans. R. Soc.A3541775–806) studied the problem for existence of solitary waves, followed by works of Bona–Chen (1998Adv. Differ. Equ.351–84), Albert–Bona–Restrepo (1999SIAM J. Appl. Math.592139–61), Pava (1999J. Differ. Equ.152136–59), who have showed the existence of travelling waves, mostly by variational, but also bifurcation methods. Some results about the stability became available, but unfortunately, those were restricted to either small waves or Benjamin model, close to a distinguished (i.e. KdV or BO) limit. Quite recently, in 2024 (arXiv:2404.04711 [math.AP]), Abdallahet al, proved existence, orbital stability and uniqueness results for these waves, but only for large values of c γ 2 1 . In this article, we present an alternative constrained maximization procedure for the construction of these waves, for the full range of the parameters, which allows us to ascertain their spectral stability. Moreover, we extend this construction to allL2subcritical cases (i.e. power nonlinearities ( | u | p 2 u ) x , 2 < p 6 ). Finally, we propose a different procedure, based on a specific form of the Sobolev embedding inequality, which works for all powers 2 < p < , but produces some unstable waves, for largep. Some open questions and a conjecture regarding this last result are proposed for further investigation. 
    more » « less
  3. Abstract The genericity of Arnold diffusion in the analytic category is an open problem. In this paper, we study this problem in the followinga prioriunstable Hamiltonian system with a time-periodic perturbation H ε ( p , q , I , φ , t ) = h ( I ) + i = 1 n ± 1 2 p i 2 + V i ( q i ) + ε H 1 ( p , q , I , φ , t ) , where ( p , q ) R n × T n , ( I , φ ) R d × T d withn,d⩾ 1,Viare Morse potentials, andɛis a small non-zero parameter. The unperturbed Hamiltonian is not necessarily convex, and the induced inner dynamics does not need to satisfy a twist condition. Using geometric methods we prove that Arnold diffusion occurs for generic analytic perturbationsH1. Indeed, the set of admissibleH1isCωdense andC3open (a fortiori,Cωopen). Our perturbative technique for the genericity is valid in theCktopology for allk∈ [3, ∞) ∪ {∞,ω}. 
    more » « less
  4. Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrum f 0 ( , p ) with the Green’s function G ( r , p ; p ) , which describes the monoenergetic spectrum solution in which f 0 δ ( p p ) asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution for G ( r , p ; p ) . In this paper, we explore for the first time, solutions for more general and realistic forms for f 0 ( , p ) . The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering time τ ( r , p ) = τ 0 ( p / p 0 ) α in the shear flow region 0 <r<r2, and τ ( r , p ) = τ 0 ( p / p 0 ) α ( r / r 2 ) s , wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution ψ p ( r , p ; p ) that particles observed at (r,p) originated fromr→ ∞ with momentum p . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described. 
    more » « less
  5. Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of σ rv = 2.5 0.8 + 1.3 km s−1, which results in a dynamical mass of M 1 / 2 ( r h ) = 8 4 + 12 × 10 5 Mand a mass-to-light ratio ofM/LV= 440 250 + 650 M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities ( ρ 1 / 2 3.5 2.1 + 5.7 × 10 7 Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies. 
    more » « less